| Step |
Hyp |
Ref |
Expression |
| 1 |
|
off.1 |
|- ( ( ph /\ ( x e. S /\ y e. T ) ) -> ( x R y ) e. U ) |
| 2 |
|
off.2 |
|- ( ph -> F : A --> S ) |
| 3 |
|
off.3 |
|- ( ph -> G : B --> T ) |
| 4 |
|
off.4 |
|- ( ph -> A e. V ) |
| 5 |
|
off.5 |
|- ( ph -> B e. W ) |
| 6 |
|
off.6 |
|- ( A i^i B ) = C |
| 7 |
2
|
ffnd |
|- ( ph -> F Fn A ) |
| 8 |
3
|
ffnd |
|- ( ph -> G Fn B ) |
| 9 |
|
eqidd |
|- ( ( ph /\ z e. A ) -> ( F ` z ) = ( F ` z ) ) |
| 10 |
|
eqidd |
|- ( ( ph /\ z e. B ) -> ( G ` z ) = ( G ` z ) ) |
| 11 |
7 8 4 5 6 9 10
|
offval |
|- ( ph -> ( F oF R G ) = ( z e. C |-> ( ( F ` z ) R ( G ` z ) ) ) ) |
| 12 |
|
inss1 |
|- ( A i^i B ) C_ A |
| 13 |
6 12
|
eqsstrri |
|- C C_ A |
| 14 |
13
|
sseli |
|- ( z e. C -> z e. A ) |
| 15 |
|
ffvelcdm |
|- ( ( F : A --> S /\ z e. A ) -> ( F ` z ) e. S ) |
| 16 |
2 14 15
|
syl2an |
|- ( ( ph /\ z e. C ) -> ( F ` z ) e. S ) |
| 17 |
|
inss2 |
|- ( A i^i B ) C_ B |
| 18 |
6 17
|
eqsstrri |
|- C C_ B |
| 19 |
18
|
sseli |
|- ( z e. C -> z e. B ) |
| 20 |
|
ffvelcdm |
|- ( ( G : B --> T /\ z e. B ) -> ( G ` z ) e. T ) |
| 21 |
3 19 20
|
syl2an |
|- ( ( ph /\ z e. C ) -> ( G ` z ) e. T ) |
| 22 |
1
|
ralrimivva |
|- ( ph -> A. x e. S A. y e. T ( x R y ) e. U ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ z e. C ) -> A. x e. S A. y e. T ( x R y ) e. U ) |
| 24 |
|
ovrspc2v |
|- ( ( ( ( F ` z ) e. S /\ ( G ` z ) e. T ) /\ A. x e. S A. y e. T ( x R y ) e. U ) -> ( ( F ` z ) R ( G ` z ) ) e. U ) |
| 25 |
16 21 23 24
|
syl21anc |
|- ( ( ph /\ z e. C ) -> ( ( F ` z ) R ( G ` z ) ) e. U ) |
| 26 |
11 25
|
fmpt3d |
|- ( ph -> ( F oF R G ) : C --> U ) |