| Step | Hyp | Ref | Expression | 
						
							| 1 |  | off2.1 |  |-  ( ( ph /\ ( x e. S /\ y e. T ) ) -> ( x R y ) e. U ) | 
						
							| 2 |  | off2.2 |  |-  ( ph -> F : A --> S ) | 
						
							| 3 |  | off2.3 |  |-  ( ph -> G : B --> T ) | 
						
							| 4 |  | off2.4 |  |-  ( ph -> A e. V ) | 
						
							| 5 |  | off2.5 |  |-  ( ph -> B e. W ) | 
						
							| 6 |  | off2.6 |  |-  ( ph -> ( A i^i B ) = C ) | 
						
							| 7 | 2 | ffnd |  |-  ( ph -> F Fn A ) | 
						
							| 8 | 3 | ffnd |  |-  ( ph -> G Fn B ) | 
						
							| 9 |  | eqid |  |-  ( A i^i B ) = ( A i^i B ) | 
						
							| 10 |  | eqidd |  |-  ( ( ph /\ z e. A ) -> ( F ` z ) = ( F ` z ) ) | 
						
							| 11 |  | eqidd |  |-  ( ( ph /\ z e. B ) -> ( G ` z ) = ( G ` z ) ) | 
						
							| 12 | 7 8 4 5 9 10 11 | offval |  |-  ( ph -> ( F oF R G ) = ( z e. ( A i^i B ) |-> ( ( F ` z ) R ( G ` z ) ) ) ) | 
						
							| 13 | 6 | mpteq1d |  |-  ( ph -> ( z e. ( A i^i B ) |-> ( ( F ` z ) R ( G ` z ) ) ) = ( z e. C |-> ( ( F ` z ) R ( G ` z ) ) ) ) | 
						
							| 14 | 12 13 | eqtrd |  |-  ( ph -> ( F oF R G ) = ( z e. C |-> ( ( F ` z ) R ( G ` z ) ) ) ) | 
						
							| 15 | 2 | adantr |  |-  ( ( ph /\ z e. C ) -> F : A --> S ) | 
						
							| 16 |  | inss1 |  |-  ( A i^i B ) C_ A | 
						
							| 17 | 6 16 | eqsstrrdi |  |-  ( ph -> C C_ A ) | 
						
							| 18 | 17 | sselda |  |-  ( ( ph /\ z e. C ) -> z e. A ) | 
						
							| 19 | 15 18 | ffvelcdmd |  |-  ( ( ph /\ z e. C ) -> ( F ` z ) e. S ) | 
						
							| 20 | 3 | adantr |  |-  ( ( ph /\ z e. C ) -> G : B --> T ) | 
						
							| 21 |  | inss2 |  |-  ( A i^i B ) C_ B | 
						
							| 22 | 6 21 | eqsstrrdi |  |-  ( ph -> C C_ B ) | 
						
							| 23 | 22 | sselda |  |-  ( ( ph /\ z e. C ) -> z e. B ) | 
						
							| 24 | 20 23 | ffvelcdmd |  |-  ( ( ph /\ z e. C ) -> ( G ` z ) e. T ) | 
						
							| 25 | 1 | ralrimivva |  |-  ( ph -> A. x e. S A. y e. T ( x R y ) e. U ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ph /\ z e. C ) -> A. x e. S A. y e. T ( x R y ) e. U ) | 
						
							| 27 |  | ovrspc2v |  |-  ( ( ( ( F ` z ) e. S /\ ( G ` z ) e. T ) /\ A. x e. S A. y e. T ( x R y ) e. U ) -> ( ( F ` z ) R ( G ` z ) ) e. U ) | 
						
							| 28 | 19 24 26 27 | syl21anc |  |-  ( ( ph /\ z e. C ) -> ( ( F ` z ) R ( G ` z ) ) e. U ) | 
						
							| 29 | 14 28 | fmpt3d |  |-  ( ph -> ( F oF R G ) : C --> U ) |