| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							offinsupp1.a | 
							 |-  ( ph -> A e. V )  | 
						
						
							| 2 | 
							
								
							 | 
							offinsupp1.y | 
							 |-  ( ph -> Y e. U )  | 
						
						
							| 3 | 
							
								
							 | 
							offinsupp1.z | 
							 |-  ( ph -> Z e. W )  | 
						
						
							| 4 | 
							
								
							 | 
							offinsupp1.f | 
							 |-  ( ph -> F : A --> S )  | 
						
						
							| 5 | 
							
								
							 | 
							offinsupp1.g | 
							 |-  ( ph -> G : A --> T )  | 
						
						
							| 6 | 
							
								
							 | 
							offinsupp1.1 | 
							 |-  ( ph -> F finSupp Y )  | 
						
						
							| 7 | 
							
								
							 | 
							offinsupp1.2 | 
							 |-  ( ( ph /\ x e. T ) -> ( Y R x ) = Z )  | 
						
						
							| 8 | 
							
								6
							 | 
							fsuppimpd | 
							 |-  ( ph -> ( F supp Y ) e. Fin )  | 
						
						
							| 9 | 
							
								
							 | 
							ssidd | 
							 |-  ( ph -> ( F supp Y ) C_ ( F supp Y ) )  | 
						
						
							| 10 | 
							
								9 7 4 5 1 2
							 | 
							suppssof1 | 
							 |-  ( ph -> ( ( F oF R G ) supp Z ) C_ ( F supp Y ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							ssfid | 
							 |-  ( ph -> ( ( F oF R G ) supp Z ) e. Fin )  | 
						
						
							| 12 | 
							
								
							 | 
							ovexd | 
							 |-  ( ( ph /\ ( i e. S /\ j e. T ) ) -> ( i R j ) e. _V )  | 
						
						
							| 13 | 
							
								
							 | 
							inidm | 
							 |-  ( A i^i A ) = A  | 
						
						
							| 14 | 
							
								12 4 5 1 1 13
							 | 
							off | 
							 |-  ( ph -> ( F oF R G ) : A --> _V )  | 
						
						
							| 15 | 
							
								14
							 | 
							ffund | 
							 |-  ( ph -> Fun ( F oF R G ) )  | 
						
						
							| 16 | 
							
								
							 | 
							ovexd | 
							 |-  ( ph -> ( F oF R G ) e. _V )  | 
						
						
							| 17 | 
							
								
							 | 
							funisfsupp | 
							 |-  ( ( Fun ( F oF R G ) /\ ( F oF R G ) e. _V /\ Z e. W ) -> ( ( F oF R G ) finSupp Z <-> ( ( F oF R G ) supp Z ) e. Fin ) )  | 
						
						
							| 18 | 
							
								15 16 3 17
							 | 
							syl3anc | 
							 |-  ( ph -> ( ( F oF R G ) finSupp Z <-> ( ( F oF R G ) supp Z ) e. Fin ) )  | 
						
						
							| 19 | 
							
								11 18
							 | 
							mpbird | 
							 |-  ( ph -> ( F oF R G ) finSupp Z )  |