Metamath Proof Explorer


Theorem offn

Description: The function operation produces a function. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypotheses offval.1
|- ( ph -> F Fn A )
offval.2
|- ( ph -> G Fn B )
offval.3
|- ( ph -> A e. V )
offval.4
|- ( ph -> B e. W )
offval.5
|- ( A i^i B ) = S
Assertion offn
|- ( ph -> ( F oF R G ) Fn S )

Proof

Step Hyp Ref Expression
1 offval.1
 |-  ( ph -> F Fn A )
2 offval.2
 |-  ( ph -> G Fn B )
3 offval.3
 |-  ( ph -> A e. V )
4 offval.4
 |-  ( ph -> B e. W )
5 offval.5
 |-  ( A i^i B ) = S
6 ovex
 |-  ( ( F ` x ) R ( G ` x ) ) e. _V
7 eqid
 |-  ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) = ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) )
8 6 7 fnmpti
 |-  ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) Fn S
9 eqidd
 |-  ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) )
10 eqidd
 |-  ( ( ph /\ x e. B ) -> ( G ` x ) = ( G ` x ) )
11 1 2 3 4 5 9 10 offval
 |-  ( ph -> ( F oF R G ) = ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) )
12 11 fneq1d
 |-  ( ph -> ( ( F oF R G ) Fn S <-> ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) Fn S ) )
13 8 12 mpbiri
 |-  ( ph -> ( F oF R G ) Fn S )