Step |
Hyp |
Ref |
Expression |
1 |
|
offval.1 |
|- ( ph -> F Fn A ) |
2 |
|
offval.2 |
|- ( ph -> G Fn B ) |
3 |
|
offval.3 |
|- ( ph -> A e. V ) |
4 |
|
offval.4 |
|- ( ph -> B e. W ) |
5 |
|
offval.5 |
|- ( A i^i B ) = S |
6 |
|
offval.6 |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = C ) |
7 |
|
offval.7 |
|- ( ( ph /\ x e. B ) -> ( G ` x ) = D ) |
8 |
|
fnex |
|- ( ( F Fn A /\ A e. V ) -> F e. _V ) |
9 |
1 3 8
|
syl2anc |
|- ( ph -> F e. _V ) |
10 |
|
fnex |
|- ( ( G Fn B /\ B e. W ) -> G e. _V ) |
11 |
2 4 10
|
syl2anc |
|- ( ph -> G e. _V ) |
12 |
1
|
fndmd |
|- ( ph -> dom F = A ) |
13 |
2
|
fndmd |
|- ( ph -> dom G = B ) |
14 |
12 13
|
ineq12d |
|- ( ph -> ( dom F i^i dom G ) = ( A i^i B ) ) |
15 |
14 5
|
eqtrdi |
|- ( ph -> ( dom F i^i dom G ) = S ) |
16 |
15
|
mpteq1d |
|- ( ph -> ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) = ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
17 |
|
inex1g |
|- ( A e. V -> ( A i^i B ) e. _V ) |
18 |
5 17
|
eqeltrrid |
|- ( A e. V -> S e. _V ) |
19 |
|
mptexg |
|- ( S e. _V -> ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) e. _V ) |
20 |
3 18 19
|
3syl |
|- ( ph -> ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) e. _V ) |
21 |
16 20
|
eqeltrd |
|- ( ph -> ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) e. _V ) |
22 |
|
dmeq |
|- ( f = F -> dom f = dom F ) |
23 |
|
dmeq |
|- ( g = G -> dom g = dom G ) |
24 |
22 23
|
ineqan12d |
|- ( ( f = F /\ g = G ) -> ( dom f i^i dom g ) = ( dom F i^i dom G ) ) |
25 |
|
fveq1 |
|- ( f = F -> ( f ` x ) = ( F ` x ) ) |
26 |
|
fveq1 |
|- ( g = G -> ( g ` x ) = ( G ` x ) ) |
27 |
25 26
|
oveqan12d |
|- ( ( f = F /\ g = G ) -> ( ( f ` x ) R ( g ` x ) ) = ( ( F ` x ) R ( G ` x ) ) ) |
28 |
24 27
|
mpteq12dv |
|- ( ( f = F /\ g = G ) -> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
29 |
|
df-of |
|- oF R = ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) ) |
30 |
28 29
|
ovmpoga |
|- ( ( F e. _V /\ G e. _V /\ ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) e. _V ) -> ( F oF R G ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
31 |
9 11 21 30
|
syl3anc |
|- ( ph -> ( F oF R G ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
32 |
5
|
eleq2i |
|- ( x e. ( A i^i B ) <-> x e. S ) |
33 |
|
elin |
|- ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) ) |
34 |
32 33
|
bitr3i |
|- ( x e. S <-> ( x e. A /\ x e. B ) ) |
35 |
6
|
adantrr |
|- ( ( ph /\ ( x e. A /\ x e. B ) ) -> ( F ` x ) = C ) |
36 |
7
|
adantrl |
|- ( ( ph /\ ( x e. A /\ x e. B ) ) -> ( G ` x ) = D ) |
37 |
35 36
|
oveq12d |
|- ( ( ph /\ ( x e. A /\ x e. B ) ) -> ( ( F ` x ) R ( G ` x ) ) = ( C R D ) ) |
38 |
34 37
|
sylan2b |
|- ( ( ph /\ x e. S ) -> ( ( F ` x ) R ( G ` x ) ) = ( C R D ) ) |
39 |
38
|
mpteq2dva |
|- ( ph -> ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) = ( x e. S |-> ( C R D ) ) ) |
40 |
31 16 39
|
3eqtrd |
|- ( ph -> ( F oF R G ) = ( x e. S |-> ( C R D ) ) ) |