| Step |
Hyp |
Ref |
Expression |
| 1 |
|
offval2.1 |
|- ( ph -> A e. V ) |
| 2 |
|
offval2.2 |
|- ( ( ph /\ x e. A ) -> B e. W ) |
| 3 |
|
offval2.3 |
|- ( ( ph /\ x e. A ) -> C e. X ) |
| 4 |
|
offval2.4 |
|- ( ph -> F = ( x e. A |-> B ) ) |
| 5 |
|
offval2.5 |
|- ( ph -> G = ( x e. A |-> C ) ) |
| 6 |
2
|
ralrimiva |
|- ( ph -> A. x e. A B e. W ) |
| 7 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
| 8 |
7
|
fnmpt |
|- ( A. x e. A B e. W -> ( x e. A |-> B ) Fn A ) |
| 9 |
6 8
|
syl |
|- ( ph -> ( x e. A |-> B ) Fn A ) |
| 10 |
4
|
fneq1d |
|- ( ph -> ( F Fn A <-> ( x e. A |-> B ) Fn A ) ) |
| 11 |
9 10
|
mpbird |
|- ( ph -> F Fn A ) |
| 12 |
3
|
ralrimiva |
|- ( ph -> A. x e. A C e. X ) |
| 13 |
|
eqid |
|- ( x e. A |-> C ) = ( x e. A |-> C ) |
| 14 |
13
|
fnmpt |
|- ( A. x e. A C e. X -> ( x e. A |-> C ) Fn A ) |
| 15 |
12 14
|
syl |
|- ( ph -> ( x e. A |-> C ) Fn A ) |
| 16 |
5
|
fneq1d |
|- ( ph -> ( G Fn A <-> ( x e. A |-> C ) Fn A ) ) |
| 17 |
15 16
|
mpbird |
|- ( ph -> G Fn A ) |
| 18 |
|
inidm |
|- ( A i^i A ) = A |
| 19 |
4
|
adantr |
|- ( ( ph /\ y e. A ) -> F = ( x e. A |-> B ) ) |
| 20 |
19
|
fveq1d |
|- ( ( ph /\ y e. A ) -> ( F ` y ) = ( ( x e. A |-> B ) ` y ) ) |
| 21 |
5
|
adantr |
|- ( ( ph /\ y e. A ) -> G = ( x e. A |-> C ) ) |
| 22 |
21
|
fveq1d |
|- ( ( ph /\ y e. A ) -> ( G ` y ) = ( ( x e. A |-> C ) ` y ) ) |
| 23 |
11 17 1 1 18 20 22
|
offval |
|- ( ph -> ( F oF R G ) = ( y e. A |-> ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) ) ) |
| 24 |
|
nffvmpt1 |
|- F/_ x ( ( x e. A |-> B ) ` y ) |
| 25 |
|
nfcv |
|- F/_ x R |
| 26 |
|
nffvmpt1 |
|- F/_ x ( ( x e. A |-> C ) ` y ) |
| 27 |
24 25 26
|
nfov |
|- F/_ x ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) |
| 28 |
|
nfcv |
|- F/_ y ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) |
| 29 |
|
fveq2 |
|- ( y = x -> ( ( x e. A |-> B ) ` y ) = ( ( x e. A |-> B ) ` x ) ) |
| 30 |
|
fveq2 |
|- ( y = x -> ( ( x e. A |-> C ) ` y ) = ( ( x e. A |-> C ) ` x ) ) |
| 31 |
29 30
|
oveq12d |
|- ( y = x -> ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) = ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) ) |
| 32 |
27 28 31
|
cbvmpt |
|- ( y e. A |-> ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) ) = ( x e. A |-> ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) ) |
| 33 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
| 34 |
7
|
fvmpt2 |
|- ( ( x e. A /\ B e. W ) -> ( ( x e. A |-> B ) ` x ) = B ) |
| 35 |
33 2 34
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( ( x e. A |-> B ) ` x ) = B ) |
| 36 |
13
|
fvmpt2 |
|- ( ( x e. A /\ C e. X ) -> ( ( x e. A |-> C ) ` x ) = C ) |
| 37 |
33 3 36
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( ( x e. A |-> C ) ` x ) = C ) |
| 38 |
35 37
|
oveq12d |
|- ( ( ph /\ x e. A ) -> ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) = ( B R C ) ) |
| 39 |
38
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) ) = ( x e. A |-> ( B R C ) ) ) |
| 40 |
32 39
|
eqtrid |
|- ( ph -> ( y e. A |-> ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) ) = ( x e. A |-> ( B R C ) ) ) |
| 41 |
23 40
|
eqtrd |
|- ( ph -> ( F oF R G ) = ( x e. A |-> ( B R C ) ) ) |