| Step |
Hyp |
Ref |
Expression |
| 1 |
|
offval22.a |
|- ( ph -> A e. V ) |
| 2 |
|
offval22.b |
|- ( ph -> B e. W ) |
| 3 |
|
offval22.c |
|- ( ( ph /\ x e. A /\ y e. B ) -> C e. X ) |
| 4 |
|
offval22.d |
|- ( ( ph /\ x e. A /\ y e. B ) -> D e. Y ) |
| 5 |
|
offval22.f |
|- ( ph -> F = ( x e. A , y e. B |-> C ) ) |
| 6 |
|
offval22.g |
|- ( ph -> G = ( x e. A , y e. B |-> D ) ) |
| 7 |
1 2
|
xpexd |
|- ( ph -> ( A X. B ) e. _V ) |
| 8 |
|
xp1st |
|- ( z e. ( A X. B ) -> ( 1st ` z ) e. A ) |
| 9 |
|
xp2nd |
|- ( z e. ( A X. B ) -> ( 2nd ` z ) e. B ) |
| 10 |
8 9
|
jca |
|- ( z e. ( A X. B ) -> ( ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) ) |
| 11 |
|
fvex |
|- ( 2nd ` z ) e. _V |
| 12 |
|
fvex |
|- ( 1st ` z ) e. _V |
| 13 |
|
nfcv |
|- F/_ y ( 2nd ` z ) |
| 14 |
|
nfcv |
|- F/_ x ( 2nd ` z ) |
| 15 |
|
nfcv |
|- F/_ x ( 1st ` z ) |
| 16 |
|
nfv |
|- F/ y ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) |
| 17 |
|
nfcsb1v |
|- F/_ y [_ ( 2nd ` z ) / y ]_ C |
| 18 |
17
|
nfel1 |
|- F/ y [_ ( 2nd ` z ) / y ]_ C e. _V |
| 19 |
16 18
|
nfim |
|- F/ y ( ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 2nd ` z ) / y ]_ C e. _V ) |
| 20 |
|
nfv |
|- F/ x ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) |
| 21 |
|
nfcsb1v |
|- F/_ x [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C |
| 22 |
21
|
nfel1 |
|- F/ x [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V |
| 23 |
20 22
|
nfim |
|- F/ x ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V ) |
| 24 |
|
eleq1 |
|- ( y = ( 2nd ` z ) -> ( y e. B <-> ( 2nd ` z ) e. B ) ) |
| 25 |
24
|
3anbi3d |
|- ( y = ( 2nd ` z ) -> ( ( ph /\ x e. A /\ y e. B ) <-> ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) ) ) |
| 26 |
|
csbeq1a |
|- ( y = ( 2nd ` z ) -> C = [_ ( 2nd ` z ) / y ]_ C ) |
| 27 |
26
|
eleq1d |
|- ( y = ( 2nd ` z ) -> ( C e. _V <-> [_ ( 2nd ` z ) / y ]_ C e. _V ) ) |
| 28 |
25 27
|
imbi12d |
|- ( y = ( 2nd ` z ) -> ( ( ( ph /\ x e. A /\ y e. B ) -> C e. _V ) <-> ( ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 2nd ` z ) / y ]_ C e. _V ) ) ) |
| 29 |
|
eleq1 |
|- ( x = ( 1st ` z ) -> ( x e. A <-> ( 1st ` z ) e. A ) ) |
| 30 |
29
|
3anbi2d |
|- ( x = ( 1st ` z ) -> ( ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) <-> ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) ) ) |
| 31 |
|
csbeq1a |
|- ( x = ( 1st ` z ) -> [_ ( 2nd ` z ) / y ]_ C = [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) |
| 32 |
31
|
eleq1d |
|- ( x = ( 1st ` z ) -> ( [_ ( 2nd ` z ) / y ]_ C e. _V <-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V ) ) |
| 33 |
30 32
|
imbi12d |
|- ( x = ( 1st ` z ) -> ( ( ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 2nd ` z ) / y ]_ C e. _V ) <-> ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V ) ) ) |
| 34 |
3
|
elexd |
|- ( ( ph /\ x e. A /\ y e. B ) -> C e. _V ) |
| 35 |
13 14 15 19 23 28 33 34
|
vtocl2gf |
|- ( ( ( 2nd ` z ) e. _V /\ ( 1st ` z ) e. _V ) -> ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V ) ) |
| 36 |
11 12 35
|
mp2an |
|- ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V ) |
| 37 |
36
|
3expb |
|- ( ( ph /\ ( ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V ) |
| 38 |
10 37
|
sylan2 |
|- ( ( ph /\ z e. ( A X. B ) ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V ) |
| 39 |
|
nfcsb1v |
|- F/_ y [_ ( 2nd ` z ) / y ]_ D |
| 40 |
39
|
nfel1 |
|- F/ y [_ ( 2nd ` z ) / y ]_ D e. _V |
| 41 |
16 40
|
nfim |
|- F/ y ( ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 2nd ` z ) / y ]_ D e. _V ) |
| 42 |
|
nfcsb1v |
|- F/_ x [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D |
| 43 |
42
|
nfel1 |
|- F/ x [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V |
| 44 |
20 43
|
nfim |
|- F/ x ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V ) |
| 45 |
|
csbeq1a |
|- ( y = ( 2nd ` z ) -> D = [_ ( 2nd ` z ) / y ]_ D ) |
| 46 |
45
|
eleq1d |
|- ( y = ( 2nd ` z ) -> ( D e. _V <-> [_ ( 2nd ` z ) / y ]_ D e. _V ) ) |
| 47 |
25 46
|
imbi12d |
|- ( y = ( 2nd ` z ) -> ( ( ( ph /\ x e. A /\ y e. B ) -> D e. _V ) <-> ( ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 2nd ` z ) / y ]_ D e. _V ) ) ) |
| 48 |
|
csbeq1a |
|- ( x = ( 1st ` z ) -> [_ ( 2nd ` z ) / y ]_ D = [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) |
| 49 |
48
|
eleq1d |
|- ( x = ( 1st ` z ) -> ( [_ ( 2nd ` z ) / y ]_ D e. _V <-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V ) ) |
| 50 |
30 49
|
imbi12d |
|- ( x = ( 1st ` z ) -> ( ( ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 2nd ` z ) / y ]_ D e. _V ) <-> ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V ) ) ) |
| 51 |
4
|
elexd |
|- ( ( ph /\ x e. A /\ y e. B ) -> D e. _V ) |
| 52 |
13 14 15 41 44 47 50 51
|
vtocl2gf |
|- ( ( ( 2nd ` z ) e. _V /\ ( 1st ` z ) e. _V ) -> ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V ) ) |
| 53 |
11 12 52
|
mp2an |
|- ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V ) |
| 54 |
53
|
3expb |
|- ( ( ph /\ ( ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V ) |
| 55 |
10 54
|
sylan2 |
|- ( ( ph /\ z e. ( A X. B ) ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V ) |
| 56 |
|
mpompts |
|- ( x e. A , y e. B |-> C ) = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) |
| 57 |
5 56
|
eqtrdi |
|- ( ph -> F = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) ) |
| 58 |
|
mpompts |
|- ( x e. A , y e. B |-> D ) = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) |
| 59 |
6 58
|
eqtrdi |
|- ( ph -> G = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) ) |
| 60 |
7 38 55 57 59
|
offval2 |
|- ( ph -> ( F oF R G ) = ( z e. ( A X. B ) |-> ( [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C R [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) ) ) |
| 61 |
|
csbov12g |
|- ( ( 2nd ` z ) e. _V -> [_ ( 2nd ` z ) / y ]_ ( C R D ) = ( [_ ( 2nd ` z ) / y ]_ C R [_ ( 2nd ` z ) / y ]_ D ) ) |
| 62 |
61
|
csbeq2dv |
|- ( ( 2nd ` z ) e. _V -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ ( C R D ) = [_ ( 1st ` z ) / x ]_ ( [_ ( 2nd ` z ) / y ]_ C R [_ ( 2nd ` z ) / y ]_ D ) ) |
| 63 |
11 62
|
ax-mp |
|- [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ ( C R D ) = [_ ( 1st ` z ) / x ]_ ( [_ ( 2nd ` z ) / y ]_ C R [_ ( 2nd ` z ) / y ]_ D ) |
| 64 |
|
csbov12g |
|- ( ( 1st ` z ) e. _V -> [_ ( 1st ` z ) / x ]_ ( [_ ( 2nd ` z ) / y ]_ C R [_ ( 2nd ` z ) / y ]_ D ) = ( [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C R [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) ) |
| 65 |
12 64
|
ax-mp |
|- [_ ( 1st ` z ) / x ]_ ( [_ ( 2nd ` z ) / y ]_ C R [_ ( 2nd ` z ) / y ]_ D ) = ( [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C R [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) |
| 66 |
63 65
|
eqtr2i |
|- ( [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C R [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) = [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ ( C R D ) |
| 67 |
66
|
mpteq2i |
|- ( z e. ( A X. B ) |-> ( [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C R [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) ) = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ ( C R D ) ) |
| 68 |
|
mpompts |
|- ( x e. A , y e. B |-> ( C R D ) ) = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ ( C R D ) ) |
| 69 |
67 68
|
eqtr4i |
|- ( z e. ( A X. B ) |-> ( [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C R [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) ) = ( x e. A , y e. B |-> ( C R D ) ) |
| 70 |
60 69
|
eqtrdi |
|- ( ph -> ( F oF R G ) = ( x e. A , y e. B |-> ( C R D ) ) ) |