Step |
Hyp |
Ref |
Expression |
1 |
|
offval22.a |
|- ( ph -> A e. V ) |
2 |
|
offval22.b |
|- ( ph -> B e. W ) |
3 |
|
offval22.c |
|- ( ( ph /\ x e. A /\ y e. B ) -> C e. X ) |
4 |
|
offval22.d |
|- ( ( ph /\ x e. A /\ y e. B ) -> D e. Y ) |
5 |
|
offval22.f |
|- ( ph -> F = ( x e. A , y e. B |-> C ) ) |
6 |
|
offval22.g |
|- ( ph -> G = ( x e. A , y e. B |-> D ) ) |
7 |
1 2
|
xpexd |
|- ( ph -> ( A X. B ) e. _V ) |
8 |
|
xp1st |
|- ( z e. ( A X. B ) -> ( 1st ` z ) e. A ) |
9 |
|
xp2nd |
|- ( z e. ( A X. B ) -> ( 2nd ` z ) e. B ) |
10 |
8 9
|
jca |
|- ( z e. ( A X. B ) -> ( ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) ) |
11 |
|
fvex |
|- ( 2nd ` z ) e. _V |
12 |
|
fvex |
|- ( 1st ` z ) e. _V |
13 |
|
nfcv |
|- F/_ y ( 2nd ` z ) |
14 |
|
nfcv |
|- F/_ x ( 2nd ` z ) |
15 |
|
nfcv |
|- F/_ x ( 1st ` z ) |
16 |
|
nfv |
|- F/ y ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) |
17 |
|
nfcsb1v |
|- F/_ y [_ ( 2nd ` z ) / y ]_ C |
18 |
17
|
nfel1 |
|- F/ y [_ ( 2nd ` z ) / y ]_ C e. _V |
19 |
16 18
|
nfim |
|- F/ y ( ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 2nd ` z ) / y ]_ C e. _V ) |
20 |
|
nfv |
|- F/ x ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) |
21 |
|
nfcsb1v |
|- F/_ x [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C |
22 |
21
|
nfel1 |
|- F/ x [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V |
23 |
20 22
|
nfim |
|- F/ x ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V ) |
24 |
|
eleq1 |
|- ( y = ( 2nd ` z ) -> ( y e. B <-> ( 2nd ` z ) e. B ) ) |
25 |
24
|
3anbi3d |
|- ( y = ( 2nd ` z ) -> ( ( ph /\ x e. A /\ y e. B ) <-> ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) ) ) |
26 |
|
csbeq1a |
|- ( y = ( 2nd ` z ) -> C = [_ ( 2nd ` z ) / y ]_ C ) |
27 |
26
|
eleq1d |
|- ( y = ( 2nd ` z ) -> ( C e. _V <-> [_ ( 2nd ` z ) / y ]_ C e. _V ) ) |
28 |
25 27
|
imbi12d |
|- ( y = ( 2nd ` z ) -> ( ( ( ph /\ x e. A /\ y e. B ) -> C e. _V ) <-> ( ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 2nd ` z ) / y ]_ C e. _V ) ) ) |
29 |
|
eleq1 |
|- ( x = ( 1st ` z ) -> ( x e. A <-> ( 1st ` z ) e. A ) ) |
30 |
29
|
3anbi2d |
|- ( x = ( 1st ` z ) -> ( ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) <-> ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) ) ) |
31 |
|
csbeq1a |
|- ( x = ( 1st ` z ) -> [_ ( 2nd ` z ) / y ]_ C = [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) |
32 |
31
|
eleq1d |
|- ( x = ( 1st ` z ) -> ( [_ ( 2nd ` z ) / y ]_ C e. _V <-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V ) ) |
33 |
30 32
|
imbi12d |
|- ( x = ( 1st ` z ) -> ( ( ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 2nd ` z ) / y ]_ C e. _V ) <-> ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V ) ) ) |
34 |
3
|
elexd |
|- ( ( ph /\ x e. A /\ y e. B ) -> C e. _V ) |
35 |
13 14 15 19 23 28 33 34
|
vtocl2gf |
|- ( ( ( 2nd ` z ) e. _V /\ ( 1st ` z ) e. _V ) -> ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V ) ) |
36 |
11 12 35
|
mp2an |
|- ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V ) |
37 |
36
|
3expb |
|- ( ( ph /\ ( ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V ) |
38 |
10 37
|
sylan2 |
|- ( ( ph /\ z e. ( A X. B ) ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V ) |
39 |
|
nfcsb1v |
|- F/_ y [_ ( 2nd ` z ) / y ]_ D |
40 |
39
|
nfel1 |
|- F/ y [_ ( 2nd ` z ) / y ]_ D e. _V |
41 |
16 40
|
nfim |
|- F/ y ( ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 2nd ` z ) / y ]_ D e. _V ) |
42 |
|
nfcsb1v |
|- F/_ x [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D |
43 |
42
|
nfel1 |
|- F/ x [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V |
44 |
20 43
|
nfim |
|- F/ x ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V ) |
45 |
|
csbeq1a |
|- ( y = ( 2nd ` z ) -> D = [_ ( 2nd ` z ) / y ]_ D ) |
46 |
45
|
eleq1d |
|- ( y = ( 2nd ` z ) -> ( D e. _V <-> [_ ( 2nd ` z ) / y ]_ D e. _V ) ) |
47 |
25 46
|
imbi12d |
|- ( y = ( 2nd ` z ) -> ( ( ( ph /\ x e. A /\ y e. B ) -> D e. _V ) <-> ( ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 2nd ` z ) / y ]_ D e. _V ) ) ) |
48 |
|
csbeq1a |
|- ( x = ( 1st ` z ) -> [_ ( 2nd ` z ) / y ]_ D = [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) |
49 |
48
|
eleq1d |
|- ( x = ( 1st ` z ) -> ( [_ ( 2nd ` z ) / y ]_ D e. _V <-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V ) ) |
50 |
30 49
|
imbi12d |
|- ( x = ( 1st ` z ) -> ( ( ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 2nd ` z ) / y ]_ D e. _V ) <-> ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V ) ) ) |
51 |
4
|
elexd |
|- ( ( ph /\ x e. A /\ y e. B ) -> D e. _V ) |
52 |
13 14 15 41 44 47 50 51
|
vtocl2gf |
|- ( ( ( 2nd ` z ) e. _V /\ ( 1st ` z ) e. _V ) -> ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V ) ) |
53 |
11 12 52
|
mp2an |
|- ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V ) |
54 |
53
|
3expb |
|- ( ( ph /\ ( ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V ) |
55 |
10 54
|
sylan2 |
|- ( ( ph /\ z e. ( A X. B ) ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V ) |
56 |
|
mpompts |
|- ( x e. A , y e. B |-> C ) = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) |
57 |
5 56
|
eqtrdi |
|- ( ph -> F = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) ) |
58 |
|
mpompts |
|- ( x e. A , y e. B |-> D ) = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) |
59 |
6 58
|
eqtrdi |
|- ( ph -> G = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) ) |
60 |
7 38 55 57 59
|
offval2 |
|- ( ph -> ( F oF R G ) = ( z e. ( A X. B ) |-> ( [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C R [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) ) ) |
61 |
|
csbov12g |
|- ( ( 2nd ` z ) e. _V -> [_ ( 2nd ` z ) / y ]_ ( C R D ) = ( [_ ( 2nd ` z ) / y ]_ C R [_ ( 2nd ` z ) / y ]_ D ) ) |
62 |
61
|
csbeq2dv |
|- ( ( 2nd ` z ) e. _V -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ ( C R D ) = [_ ( 1st ` z ) / x ]_ ( [_ ( 2nd ` z ) / y ]_ C R [_ ( 2nd ` z ) / y ]_ D ) ) |
63 |
11 62
|
ax-mp |
|- [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ ( C R D ) = [_ ( 1st ` z ) / x ]_ ( [_ ( 2nd ` z ) / y ]_ C R [_ ( 2nd ` z ) / y ]_ D ) |
64 |
|
csbov12g |
|- ( ( 1st ` z ) e. _V -> [_ ( 1st ` z ) / x ]_ ( [_ ( 2nd ` z ) / y ]_ C R [_ ( 2nd ` z ) / y ]_ D ) = ( [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C R [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) ) |
65 |
12 64
|
ax-mp |
|- [_ ( 1st ` z ) / x ]_ ( [_ ( 2nd ` z ) / y ]_ C R [_ ( 2nd ` z ) / y ]_ D ) = ( [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C R [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) |
66 |
63 65
|
eqtr2i |
|- ( [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C R [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) = [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ ( C R D ) |
67 |
66
|
mpteq2i |
|- ( z e. ( A X. B ) |-> ( [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C R [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) ) = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ ( C R D ) ) |
68 |
|
mpompts |
|- ( x e. A , y e. B |-> ( C R D ) ) = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ ( C R D ) ) |
69 |
67 68
|
eqtr4i |
|- ( z e. ( A X. B ) |-> ( [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C R [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) ) = ( x e. A , y e. B |-> ( C R D ) ) |
70 |
60 69
|
eqtrdi |
|- ( ph -> ( F oF R G ) = ( x e. A , y e. B |-> ( C R D ) ) ) |