Step |
Hyp |
Ref |
Expression |
1 |
|
offval2f.0 |
|- F/ x ph |
2 |
|
offval2f.a |
|- F/_ x A |
3 |
|
offval2f.1 |
|- ( ph -> A e. V ) |
4 |
|
offval2f.2 |
|- ( ( ph /\ x e. A ) -> B e. W ) |
5 |
|
offval2f.3 |
|- ( ( ph /\ x e. A ) -> C e. X ) |
6 |
|
offval2f.4 |
|- ( ph -> F = ( x e. A |-> B ) ) |
7 |
|
offval2f.5 |
|- ( ph -> G = ( x e. A |-> C ) ) |
8 |
4
|
ex |
|- ( ph -> ( x e. A -> B e. W ) ) |
9 |
1 8
|
ralrimi |
|- ( ph -> A. x e. A B e. W ) |
10 |
2
|
fnmptf |
|- ( A. x e. A B e. W -> ( x e. A |-> B ) Fn A ) |
11 |
9 10
|
syl |
|- ( ph -> ( x e. A |-> B ) Fn A ) |
12 |
6
|
fneq1d |
|- ( ph -> ( F Fn A <-> ( x e. A |-> B ) Fn A ) ) |
13 |
11 12
|
mpbird |
|- ( ph -> F Fn A ) |
14 |
5
|
ex |
|- ( ph -> ( x e. A -> C e. X ) ) |
15 |
1 14
|
ralrimi |
|- ( ph -> A. x e. A C e. X ) |
16 |
2
|
fnmptf |
|- ( A. x e. A C e. X -> ( x e. A |-> C ) Fn A ) |
17 |
15 16
|
syl |
|- ( ph -> ( x e. A |-> C ) Fn A ) |
18 |
7
|
fneq1d |
|- ( ph -> ( G Fn A <-> ( x e. A |-> C ) Fn A ) ) |
19 |
17 18
|
mpbird |
|- ( ph -> G Fn A ) |
20 |
|
inidm |
|- ( A i^i A ) = A |
21 |
6
|
adantr |
|- ( ( ph /\ y e. A ) -> F = ( x e. A |-> B ) ) |
22 |
21
|
fveq1d |
|- ( ( ph /\ y e. A ) -> ( F ` y ) = ( ( x e. A |-> B ) ` y ) ) |
23 |
7
|
adantr |
|- ( ( ph /\ y e. A ) -> G = ( x e. A |-> C ) ) |
24 |
23
|
fveq1d |
|- ( ( ph /\ y e. A ) -> ( G ` y ) = ( ( x e. A |-> C ) ` y ) ) |
25 |
13 19 3 3 20 22 24
|
offval |
|- ( ph -> ( F oF R G ) = ( y e. A |-> ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) ) ) |
26 |
|
nfcv |
|- F/_ y A |
27 |
|
nffvmpt1 |
|- F/_ x ( ( x e. A |-> B ) ` y ) |
28 |
|
nfcv |
|- F/_ x R |
29 |
|
nffvmpt1 |
|- F/_ x ( ( x e. A |-> C ) ` y ) |
30 |
27 28 29
|
nfov |
|- F/_ x ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) |
31 |
|
nfcv |
|- F/_ y ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) |
32 |
|
fveq2 |
|- ( y = x -> ( ( x e. A |-> B ) ` y ) = ( ( x e. A |-> B ) ` x ) ) |
33 |
|
fveq2 |
|- ( y = x -> ( ( x e. A |-> C ) ` y ) = ( ( x e. A |-> C ) ` x ) ) |
34 |
32 33
|
oveq12d |
|- ( y = x -> ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) = ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) ) |
35 |
26 2 30 31 34
|
cbvmptf |
|- ( y e. A |-> ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) ) = ( x e. A |-> ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) ) |
36 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
37 |
2
|
fvmpt2f |
|- ( ( x e. A /\ B e. W ) -> ( ( x e. A |-> B ) ` x ) = B ) |
38 |
36 4 37
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( ( x e. A |-> B ) ` x ) = B ) |
39 |
2
|
fvmpt2f |
|- ( ( x e. A /\ C e. X ) -> ( ( x e. A |-> C ) ` x ) = C ) |
40 |
36 5 39
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( ( x e. A |-> C ) ` x ) = C ) |
41 |
38 40
|
oveq12d |
|- ( ( ph /\ x e. A ) -> ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) = ( B R C ) ) |
42 |
1 41
|
mpteq2da |
|- ( ph -> ( x e. A |-> ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) ) = ( x e. A |-> ( B R C ) ) ) |
43 |
35 42
|
eqtrid |
|- ( ph -> ( y e. A |-> ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) ) = ( x e. A |-> ( B R C ) ) ) |
44 |
25 43
|
eqtrd |
|- ( ph -> ( F oF R G ) = ( x e. A |-> ( B R C ) ) ) |