| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
|- ( F e. V -> F e. _V ) |
| 2 |
1
|
adantr |
|- ( ( F e. V /\ G e. W ) -> F e. _V ) |
| 3 |
|
elex |
|- ( G e. W -> G e. _V ) |
| 4 |
3
|
adantl |
|- ( ( F e. V /\ G e. W ) -> G e. _V ) |
| 5 |
|
dmexg |
|- ( F e. V -> dom F e. _V ) |
| 6 |
|
inex1g |
|- ( dom F e. _V -> ( dom F i^i dom G ) e. _V ) |
| 7 |
|
mptexg |
|- ( ( dom F i^i dom G ) e. _V -> ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) e. _V ) |
| 8 |
5 6 7
|
3syl |
|- ( F e. V -> ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) e. _V ) |
| 9 |
8
|
adantr |
|- ( ( F e. V /\ G e. W ) -> ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) e. _V ) |
| 10 |
|
dmeq |
|- ( a = F -> dom a = dom F ) |
| 11 |
|
dmeq |
|- ( b = G -> dom b = dom G ) |
| 12 |
10 11
|
ineqan12d |
|- ( ( a = F /\ b = G ) -> ( dom a i^i dom b ) = ( dom F i^i dom G ) ) |
| 13 |
|
fveq1 |
|- ( a = F -> ( a ` x ) = ( F ` x ) ) |
| 14 |
|
fveq1 |
|- ( b = G -> ( b ` x ) = ( G ` x ) ) |
| 15 |
13 14
|
oveqan12d |
|- ( ( a = F /\ b = G ) -> ( ( a ` x ) R ( b ` x ) ) = ( ( F ` x ) R ( G ` x ) ) ) |
| 16 |
12 15
|
mpteq12dv |
|- ( ( a = F /\ b = G ) -> ( x e. ( dom a i^i dom b ) |-> ( ( a ` x ) R ( b ` x ) ) ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
| 17 |
|
df-of |
|- oF R = ( a e. _V , b e. _V |-> ( x e. ( dom a i^i dom b ) |-> ( ( a ` x ) R ( b ` x ) ) ) ) |
| 18 |
16 17
|
ovmpoga |
|- ( ( F e. _V /\ G e. _V /\ ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) e. _V ) -> ( F oF R G ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
| 19 |
2 4 9 18
|
syl3anc |
|- ( ( F e. V /\ G e. W ) -> ( F oF R G ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) ) |