| Step | Hyp | Ref | Expression | 
						
							| 1 |  | offvalfv.a |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | offvalfv.f |  |-  ( ph -> F Fn A ) | 
						
							| 3 |  | offvalfv.g |  |-  ( ph -> G Fn A ) | 
						
							| 4 |  | fnfvelrn |  |-  ( ( F Fn A /\ x e. A ) -> ( F ` x ) e. ran F ) | 
						
							| 5 | 2 4 | sylan |  |-  ( ( ph /\ x e. A ) -> ( F ` x ) e. ran F ) | 
						
							| 6 |  | fnfvelrn |  |-  ( ( G Fn A /\ x e. A ) -> ( G ` x ) e. ran G ) | 
						
							| 7 | 3 6 | sylan |  |-  ( ( ph /\ x e. A ) -> ( G ` x ) e. ran G ) | 
						
							| 8 |  | dffn5 |  |-  ( F Fn A <-> F = ( x e. A |-> ( F ` x ) ) ) | 
						
							| 9 | 2 8 | sylib |  |-  ( ph -> F = ( x e. A |-> ( F ` x ) ) ) | 
						
							| 10 |  | dffn5 |  |-  ( G Fn A <-> G = ( x e. A |-> ( G ` x ) ) ) | 
						
							| 11 | 3 10 | sylib |  |-  ( ph -> G = ( x e. A |-> ( G ` x ) ) ) | 
						
							| 12 | 1 5 7 9 11 | offval2 |  |-  ( ph -> ( F oF R G ) = ( x e. A |-> ( ( F ` x ) R ( G ` x ) ) ) ) |