| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) -> A e. V ) | 
						
							| 2 |  | simpr |  |-  ( ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) /\ a e. A ) -> a e. A ) | 
						
							| 3 |  | simpl2 |  |-  ( ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) /\ a e. A ) -> ( x e. A |-> B ) Fn A ) | 
						
							| 4 |  | eqid |  |-  ( x e. A |-> B ) = ( x e. A |-> B ) | 
						
							| 5 | 4 | mptfng |  |-  ( A. x e. A B e. _V <-> ( x e. A |-> B ) Fn A ) | 
						
							| 6 | 3 5 | sylibr |  |-  ( ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) /\ a e. A ) -> A. x e. A B e. _V ) | 
						
							| 7 |  | nfcsb1v |  |-  F/_ x [_ a / x ]_ B | 
						
							| 8 | 7 | nfel1 |  |-  F/ x [_ a / x ]_ B e. _V | 
						
							| 9 |  | csbeq1a |  |-  ( x = a -> B = [_ a / x ]_ B ) | 
						
							| 10 | 9 | eleq1d |  |-  ( x = a -> ( B e. _V <-> [_ a / x ]_ B e. _V ) ) | 
						
							| 11 | 8 10 | rspc |  |-  ( a e. A -> ( A. x e. A B e. _V -> [_ a / x ]_ B e. _V ) ) | 
						
							| 12 | 2 6 11 | sylc |  |-  ( ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) /\ a e. A ) -> [_ a / x ]_ B e. _V ) | 
						
							| 13 |  | simpl3 |  |-  ( ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) /\ a e. A ) -> ( x e. A |-> C ) Fn A ) | 
						
							| 14 |  | eqid |  |-  ( x e. A |-> C ) = ( x e. A |-> C ) | 
						
							| 15 | 14 | mptfng |  |-  ( A. x e. A C e. _V <-> ( x e. A |-> C ) Fn A ) | 
						
							| 16 | 13 15 | sylibr |  |-  ( ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) /\ a e. A ) -> A. x e. A C e. _V ) | 
						
							| 17 |  | nfcsb1v |  |-  F/_ x [_ a / x ]_ C | 
						
							| 18 | 17 | nfel1 |  |-  F/ x [_ a / x ]_ C e. _V | 
						
							| 19 |  | csbeq1a |  |-  ( x = a -> C = [_ a / x ]_ C ) | 
						
							| 20 | 19 | eleq1d |  |-  ( x = a -> ( C e. _V <-> [_ a / x ]_ C e. _V ) ) | 
						
							| 21 | 18 20 | rspc |  |-  ( a e. A -> ( A. x e. A C e. _V -> [_ a / x ]_ C e. _V ) ) | 
						
							| 22 | 2 16 21 | sylc |  |-  ( ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) /\ a e. A ) -> [_ a / x ]_ C e. _V ) | 
						
							| 23 |  | nfcv |  |-  F/_ a B | 
						
							| 24 | 23 7 9 | cbvmpt |  |-  ( x e. A |-> B ) = ( a e. A |-> [_ a / x ]_ B ) | 
						
							| 25 | 24 | a1i |  |-  ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) -> ( x e. A |-> B ) = ( a e. A |-> [_ a / x ]_ B ) ) | 
						
							| 26 |  | nfcv |  |-  F/_ a C | 
						
							| 27 | 26 17 19 | cbvmpt |  |-  ( x e. A |-> C ) = ( a e. A |-> [_ a / x ]_ C ) | 
						
							| 28 | 27 | a1i |  |-  ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) -> ( x e. A |-> C ) = ( a e. A |-> [_ a / x ]_ C ) ) | 
						
							| 29 | 1 12 22 25 28 | offval2 |  |-  ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) -> ( ( x e. A |-> B ) oF R ( x e. A |-> C ) ) = ( a e. A |-> ( [_ a / x ]_ B R [_ a / x ]_ C ) ) ) | 
						
							| 30 |  | nfcv |  |-  F/_ a ( B R C ) | 
						
							| 31 |  | nfcv |  |-  F/_ x R | 
						
							| 32 | 7 31 17 | nfov |  |-  F/_ x ( [_ a / x ]_ B R [_ a / x ]_ C ) | 
						
							| 33 | 9 19 | oveq12d |  |-  ( x = a -> ( B R C ) = ( [_ a / x ]_ B R [_ a / x ]_ C ) ) | 
						
							| 34 | 30 32 33 | cbvmpt |  |-  ( x e. A |-> ( B R C ) ) = ( a e. A |-> ( [_ a / x ]_ B R [_ a / x ]_ C ) ) | 
						
							| 35 | 29 34 | eqtr4di |  |-  ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) -> ( ( x e. A |-> B ) oF R ( x e. A |-> C ) ) = ( x e. A |-> ( B R C ) ) ) |