Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> F : A --> CC ) |
2 |
1
|
ffnd |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> F Fn A ) |
3 |
|
simp3 |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> G : A --> CC ) |
4 |
3
|
ffnd |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> G Fn A ) |
5 |
|
simp1 |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> A e. V ) |
6 |
|
inidm |
|- ( A i^i A ) = A |
7 |
|
eqidd |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
8 |
|
eqidd |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) |
9 |
2 4 5 5 6 7 8
|
ofval |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( F oF x. G ) ` x ) = ( ( F ` x ) x. ( G ` x ) ) ) |
10 |
9
|
eqeq1d |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( ( F oF x. G ) ` x ) = 0 <-> ( ( F ` x ) x. ( G ` x ) ) = 0 ) ) |
11 |
1
|
ffvelrnda |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( F ` x ) e. CC ) |
12 |
3
|
ffvelrnda |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( G ` x ) e. CC ) |
13 |
11 12
|
mul0ord |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( ( F ` x ) x. ( G ` x ) ) = 0 <-> ( ( F ` x ) = 0 \/ ( G ` x ) = 0 ) ) ) |
14 |
10 13
|
bitrd |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( ( F oF x. G ) ` x ) = 0 <-> ( ( F ` x ) = 0 \/ ( G ` x ) = 0 ) ) ) |
15 |
14
|
pm5.32da |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( ( x e. A /\ ( ( F oF x. G ) ` x ) = 0 ) <-> ( x e. A /\ ( ( F ` x ) = 0 \/ ( G ` x ) = 0 ) ) ) ) |
16 |
2 4 5 5 6
|
offn |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( F oF x. G ) Fn A ) |
17 |
|
fniniseg |
|- ( ( F oF x. G ) Fn A -> ( x e. ( `' ( F oF x. G ) " { 0 } ) <-> ( x e. A /\ ( ( F oF x. G ) ` x ) = 0 ) ) ) |
18 |
16 17
|
syl |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( x e. ( `' ( F oF x. G ) " { 0 } ) <-> ( x e. A /\ ( ( F oF x. G ) ` x ) = 0 ) ) ) |
19 |
|
fniniseg |
|- ( F Fn A -> ( x e. ( `' F " { 0 } ) <-> ( x e. A /\ ( F ` x ) = 0 ) ) ) |
20 |
2 19
|
syl |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( x e. ( `' F " { 0 } ) <-> ( x e. A /\ ( F ` x ) = 0 ) ) ) |
21 |
|
fniniseg |
|- ( G Fn A -> ( x e. ( `' G " { 0 } ) <-> ( x e. A /\ ( G ` x ) = 0 ) ) ) |
22 |
4 21
|
syl |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( x e. ( `' G " { 0 } ) <-> ( x e. A /\ ( G ` x ) = 0 ) ) ) |
23 |
20 22
|
orbi12d |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( ( x e. ( `' F " { 0 } ) \/ x e. ( `' G " { 0 } ) ) <-> ( ( x e. A /\ ( F ` x ) = 0 ) \/ ( x e. A /\ ( G ` x ) = 0 ) ) ) ) |
24 |
|
elun |
|- ( x e. ( ( `' F " { 0 } ) u. ( `' G " { 0 } ) ) <-> ( x e. ( `' F " { 0 } ) \/ x e. ( `' G " { 0 } ) ) ) |
25 |
|
andi |
|- ( ( x e. A /\ ( ( F ` x ) = 0 \/ ( G ` x ) = 0 ) ) <-> ( ( x e. A /\ ( F ` x ) = 0 ) \/ ( x e. A /\ ( G ` x ) = 0 ) ) ) |
26 |
23 24 25
|
3bitr4g |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( x e. ( ( `' F " { 0 } ) u. ( `' G " { 0 } ) ) <-> ( x e. A /\ ( ( F ` x ) = 0 \/ ( G ` x ) = 0 ) ) ) ) |
27 |
15 18 26
|
3bitr4d |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( x e. ( `' ( F oF x. G ) " { 0 } ) <-> x e. ( ( `' F " { 0 } ) u. ( `' G " { 0 } ) ) ) ) |
28 |
27
|
eqrdv |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( `' ( F oF x. G ) " { 0 } ) = ( ( `' F " { 0 } ) u. ( `' G " { 0 } ) ) ) |