Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> A e. V ) |
2 |
|
simp2 |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> F : A --> CC ) |
3 |
2
|
ffnd |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> F Fn A ) |
4 |
|
ax-1cn |
|- 1 e. CC |
5 |
4
|
negcli |
|- -u 1 e. CC |
6 |
|
fnconstg |
|- ( -u 1 e. CC -> ( A X. { -u 1 } ) Fn A ) |
7 |
5 6
|
mp1i |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( A X. { -u 1 } ) Fn A ) |
8 |
|
simp3 |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> G : A --> CC ) |
9 |
8
|
ffnd |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> G Fn A ) |
10 |
|
inidm |
|- ( A i^i A ) = A |
11 |
7 9 1 1 10
|
offn |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( ( A X. { -u 1 } ) oF x. G ) Fn A ) |
12 |
3 9 1 1 10
|
offn |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( F oF - G ) Fn A ) |
13 |
|
eqidd |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
14 |
5
|
a1i |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> -u 1 e. CC ) |
15 |
|
eqidd |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) |
16 |
1 14 9 15
|
ofc1 |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( ( A X. { -u 1 } ) oF x. G ) ` x ) = ( -u 1 x. ( G ` x ) ) ) |
17 |
8
|
ffvelrnda |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( G ` x ) e. CC ) |
18 |
17
|
mulm1d |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( -u 1 x. ( G ` x ) ) = -u ( G ` x ) ) |
19 |
16 18
|
eqtrd |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( ( A X. { -u 1 } ) oF x. G ) ` x ) = -u ( G ` x ) ) |
20 |
2
|
ffvelrnda |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( F ` x ) e. CC ) |
21 |
20 17
|
negsubd |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( F ` x ) + -u ( G ` x ) ) = ( ( F ` x ) - ( G ` x ) ) ) |
22 |
3 9 1 1 10 13 15
|
ofval |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( F oF - G ) ` x ) = ( ( F ` x ) - ( G ` x ) ) ) |
23 |
21 22
|
eqtr4d |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( F ` x ) + -u ( G ` x ) ) = ( ( F oF - G ) ` x ) ) |
24 |
1 3 11 12 13 19 23
|
offveq |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( F oF + ( ( A X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) |