Step |
Hyp |
Ref |
Expression |
1 |
|
breq |
|- ( R = S -> ( ( f ` x ) R ( g ` x ) <-> ( f ` x ) S ( g ` x ) ) ) |
2 |
1
|
ralbidv |
|- ( R = S -> ( A. x e. ( dom f i^i dom g ) ( f ` x ) R ( g ` x ) <-> A. x e. ( dom f i^i dom g ) ( f ` x ) S ( g ` x ) ) ) |
3 |
2
|
opabbidv |
|- ( R = S -> { <. f , g >. | A. x e. ( dom f i^i dom g ) ( f ` x ) R ( g ` x ) } = { <. f , g >. | A. x e. ( dom f i^i dom g ) ( f ` x ) S ( g ` x ) } ) |
4 |
|
df-ofr |
|- oR R = { <. f , g >. | A. x e. ( dom f i^i dom g ) ( f ` x ) R ( g ` x ) } |
5 |
|
df-ofr |
|- oR S = { <. f , g >. | A. x e. ( dom f i^i dom g ) ( f ` x ) S ( g ` x ) } |
6 |
3 4 5
|
3eqtr4g |
|- ( R = S -> oR R = oR S ) |