Metamath Proof Explorer


Theorem ofrfval

Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses offval.1
|- ( ph -> F Fn A )
offval.2
|- ( ph -> G Fn B )
offval.3
|- ( ph -> A e. V )
offval.4
|- ( ph -> B e. W )
offval.5
|- ( A i^i B ) = S
offval.6
|- ( ( ph /\ x e. A ) -> ( F ` x ) = C )
offval.7
|- ( ( ph /\ x e. B ) -> ( G ` x ) = D )
Assertion ofrfval
|- ( ph -> ( F oR R G <-> A. x e. S C R D ) )

Proof

Step Hyp Ref Expression
1 offval.1
 |-  ( ph -> F Fn A )
2 offval.2
 |-  ( ph -> G Fn B )
3 offval.3
 |-  ( ph -> A e. V )
4 offval.4
 |-  ( ph -> B e. W )
5 offval.5
 |-  ( A i^i B ) = S
6 offval.6
 |-  ( ( ph /\ x e. A ) -> ( F ` x ) = C )
7 offval.7
 |-  ( ( ph /\ x e. B ) -> ( G ` x ) = D )
8 1 3 fnexd
 |-  ( ph -> F e. _V )
9 2 4 fnexd
 |-  ( ph -> G e. _V )
10 1 2 8 9 5 6 7 ofrfvalg
 |-  ( ph -> ( F oR R G <-> A. x e. S C R D ) )