| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ofrfvalg.1 |
|- ( ph -> F Fn A ) |
| 2 |
|
ofrfvalg.2 |
|- ( ph -> G Fn B ) |
| 3 |
|
ofrfvalg.3 |
|- ( ph -> F e. V ) |
| 4 |
|
ofrfvalg.4 |
|- ( ph -> G e. W ) |
| 5 |
|
ofrfvalg.5 |
|- ( A i^i B ) = S |
| 6 |
|
ofrfvalg.6 |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = C ) |
| 7 |
|
ofrfvalg.7 |
|- ( ( ph /\ x e. B ) -> ( G ` x ) = D ) |
| 8 |
|
dmeq |
|- ( f = F -> dom f = dom F ) |
| 9 |
|
dmeq |
|- ( g = G -> dom g = dom G ) |
| 10 |
8 9
|
ineqan12d |
|- ( ( f = F /\ g = G ) -> ( dom f i^i dom g ) = ( dom F i^i dom G ) ) |
| 11 |
|
fveq1 |
|- ( f = F -> ( f ` x ) = ( F ` x ) ) |
| 12 |
|
fveq1 |
|- ( g = G -> ( g ` x ) = ( G ` x ) ) |
| 13 |
11 12
|
breqan12d |
|- ( ( f = F /\ g = G ) -> ( ( f ` x ) R ( g ` x ) <-> ( F ` x ) R ( G ` x ) ) ) |
| 14 |
10 13
|
raleqbidv |
|- ( ( f = F /\ g = G ) -> ( A. x e. ( dom f i^i dom g ) ( f ` x ) R ( g ` x ) <-> A. x e. ( dom F i^i dom G ) ( F ` x ) R ( G ` x ) ) ) |
| 15 |
|
df-ofr |
|- oR R = { <. f , g >. | A. x e. ( dom f i^i dom g ) ( f ` x ) R ( g ` x ) } |
| 16 |
14 15
|
brabga |
|- ( ( F e. V /\ G e. W ) -> ( F oR R G <-> A. x e. ( dom F i^i dom G ) ( F ` x ) R ( G ` x ) ) ) |
| 17 |
3 4 16
|
syl2anc |
|- ( ph -> ( F oR R G <-> A. x e. ( dom F i^i dom G ) ( F ` x ) R ( G ` x ) ) ) |
| 18 |
1
|
fndmd |
|- ( ph -> dom F = A ) |
| 19 |
2
|
fndmd |
|- ( ph -> dom G = B ) |
| 20 |
18 19
|
ineq12d |
|- ( ph -> ( dom F i^i dom G ) = ( A i^i B ) ) |
| 21 |
20 5
|
eqtrdi |
|- ( ph -> ( dom F i^i dom G ) = S ) |
| 22 |
21
|
raleqdv |
|- ( ph -> ( A. x e. ( dom F i^i dom G ) ( F ` x ) R ( G ` x ) <-> A. x e. S ( F ` x ) R ( G ` x ) ) ) |
| 23 |
|
inss1 |
|- ( A i^i B ) C_ A |
| 24 |
5 23
|
eqsstrri |
|- S C_ A |
| 25 |
24
|
sseli |
|- ( x e. S -> x e. A ) |
| 26 |
25 6
|
sylan2 |
|- ( ( ph /\ x e. S ) -> ( F ` x ) = C ) |
| 27 |
|
inss2 |
|- ( A i^i B ) C_ B |
| 28 |
5 27
|
eqsstrri |
|- S C_ B |
| 29 |
28
|
sseli |
|- ( x e. S -> x e. B ) |
| 30 |
29 7
|
sylan2 |
|- ( ( ph /\ x e. S ) -> ( G ` x ) = D ) |
| 31 |
26 30
|
breq12d |
|- ( ( ph /\ x e. S ) -> ( ( F ` x ) R ( G ` x ) <-> C R D ) ) |
| 32 |
31
|
ralbidva |
|- ( ph -> ( A. x e. S ( F ` x ) R ( G ` x ) <-> A. x e. S C R D ) ) |
| 33 |
17 22 32
|
3bitrd |
|- ( ph -> ( F oR R G <-> A. x e. S C R D ) ) |