| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ofrn.1 |  |-  ( ph -> F : A --> B ) | 
						
							| 2 |  | ofrn.2 |  |-  ( ph -> G : A --> B ) | 
						
							| 3 |  | ofrn.3 |  |-  ( ph -> .+ : ( B X. B ) --> C ) | 
						
							| 4 |  | ofrn.4 |  |-  ( ph -> A e. V ) | 
						
							| 5 | 1 | ffnd |  |-  ( ph -> F Fn A ) | 
						
							| 6 |  | simprl |  |-  ( ( ph /\ ( a e. A /\ z = ( ( F ` a ) .+ ( G ` a ) ) ) ) -> a e. A ) | 
						
							| 7 |  | fnfvelrn |  |-  ( ( F Fn A /\ a e. A ) -> ( F ` a ) e. ran F ) | 
						
							| 8 | 5 6 7 | syl2an2r |  |-  ( ( ph /\ ( a e. A /\ z = ( ( F ` a ) .+ ( G ` a ) ) ) ) -> ( F ` a ) e. ran F ) | 
						
							| 9 | 2 | ffnd |  |-  ( ph -> G Fn A ) | 
						
							| 10 |  | fnfvelrn |  |-  ( ( G Fn A /\ a e. A ) -> ( G ` a ) e. ran G ) | 
						
							| 11 | 9 6 10 | syl2an2r |  |-  ( ( ph /\ ( a e. A /\ z = ( ( F ` a ) .+ ( G ` a ) ) ) ) -> ( G ` a ) e. ran G ) | 
						
							| 12 |  | simprr |  |-  ( ( ph /\ ( a e. A /\ z = ( ( F ` a ) .+ ( G ` a ) ) ) ) -> z = ( ( F ` a ) .+ ( G ` a ) ) ) | 
						
							| 13 |  | rspceov |  |-  ( ( ( F ` a ) e. ran F /\ ( G ` a ) e. ran G /\ z = ( ( F ` a ) .+ ( G ` a ) ) ) -> E. x e. ran F E. y e. ran G z = ( x .+ y ) ) | 
						
							| 14 | 8 11 12 13 | syl3anc |  |-  ( ( ph /\ ( a e. A /\ z = ( ( F ` a ) .+ ( G ` a ) ) ) ) -> E. x e. ran F E. y e. ran G z = ( x .+ y ) ) | 
						
							| 15 | 14 | rexlimdvaa |  |-  ( ph -> ( E. a e. A z = ( ( F ` a ) .+ ( G ` a ) ) -> E. x e. ran F E. y e. ran G z = ( x .+ y ) ) ) | 
						
							| 16 | 15 | ss2abdv |  |-  ( ph -> { z | E. a e. A z = ( ( F ` a ) .+ ( G ` a ) ) } C_ { z | E. x e. ran F E. y e. ran G z = ( x .+ y ) } ) | 
						
							| 17 |  | inidm |  |-  ( A i^i A ) = A | 
						
							| 18 |  | eqidd |  |-  ( ( ph /\ a e. A ) -> ( F ` a ) = ( F ` a ) ) | 
						
							| 19 |  | eqidd |  |-  ( ( ph /\ a e. A ) -> ( G ` a ) = ( G ` a ) ) | 
						
							| 20 | 5 9 4 4 17 18 19 | offval |  |-  ( ph -> ( F oF .+ G ) = ( a e. A |-> ( ( F ` a ) .+ ( G ` a ) ) ) ) | 
						
							| 21 | 20 | rneqd |  |-  ( ph -> ran ( F oF .+ G ) = ran ( a e. A |-> ( ( F ` a ) .+ ( G ` a ) ) ) ) | 
						
							| 22 |  | eqid |  |-  ( a e. A |-> ( ( F ` a ) .+ ( G ` a ) ) ) = ( a e. A |-> ( ( F ` a ) .+ ( G ` a ) ) ) | 
						
							| 23 | 22 | rnmpt |  |-  ran ( a e. A |-> ( ( F ` a ) .+ ( G ` a ) ) ) = { z | E. a e. A z = ( ( F ` a ) .+ ( G ` a ) ) } | 
						
							| 24 | 21 23 | eqtrdi |  |-  ( ph -> ran ( F oF .+ G ) = { z | E. a e. A z = ( ( F ` a ) .+ ( G ` a ) ) } ) | 
						
							| 25 | 3 | ffnd |  |-  ( ph -> .+ Fn ( B X. B ) ) | 
						
							| 26 | 1 | frnd |  |-  ( ph -> ran F C_ B ) | 
						
							| 27 | 2 | frnd |  |-  ( ph -> ran G C_ B ) | 
						
							| 28 |  | xpss12 |  |-  ( ( ran F C_ B /\ ran G C_ B ) -> ( ran F X. ran G ) C_ ( B X. B ) ) | 
						
							| 29 | 26 27 28 | syl2anc |  |-  ( ph -> ( ran F X. ran G ) C_ ( B X. B ) ) | 
						
							| 30 |  | ovelimab |  |-  ( ( .+ Fn ( B X. B ) /\ ( ran F X. ran G ) C_ ( B X. B ) ) -> ( z e. ( .+ " ( ran F X. ran G ) ) <-> E. x e. ran F E. y e. ran G z = ( x .+ y ) ) ) | 
						
							| 31 | 25 29 30 | syl2anc |  |-  ( ph -> ( z e. ( .+ " ( ran F X. ran G ) ) <-> E. x e. ran F E. y e. ran G z = ( x .+ y ) ) ) | 
						
							| 32 | 31 | eqabdv |  |-  ( ph -> ( .+ " ( ran F X. ran G ) ) = { z | E. x e. ran F E. y e. ran G z = ( x .+ y ) } ) | 
						
							| 33 | 16 24 32 | 3sstr4d |  |-  ( ph -> ran ( F oF .+ G ) C_ ( .+ " ( ran F X. ran G ) ) ) |