| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp2 |  |-  ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> F : A --> CC ) | 
						
							| 2 | 1 | ffnd |  |-  ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> F Fn A ) | 
						
							| 3 |  | simp3 |  |-  ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> G : A --> CC ) | 
						
							| 4 | 3 | ffnd |  |-  ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> G Fn A ) | 
						
							| 5 |  | simp1 |  |-  ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> A e. V ) | 
						
							| 6 |  | inidm |  |-  ( A i^i A ) = A | 
						
							| 7 |  | eqidd |  |-  ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) | 
						
							| 8 |  | eqidd |  |-  ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) | 
						
							| 9 | 2 4 5 5 6 7 8 | ofval |  |-  ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( F oF - G ) ` x ) = ( ( F ` x ) - ( G ` x ) ) ) | 
						
							| 10 |  | c0ex |  |-  0 e. _V | 
						
							| 11 | 10 | fvconst2 |  |-  ( x e. A -> ( ( A X. { 0 } ) ` x ) = 0 ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( A X. { 0 } ) ` x ) = 0 ) | 
						
							| 13 | 9 12 | eqeq12d |  |-  ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( ( F oF - G ) ` x ) = ( ( A X. { 0 } ) ` x ) <-> ( ( F ` x ) - ( G ` x ) ) = 0 ) ) | 
						
							| 14 | 1 | ffvelcdmda |  |-  ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( F ` x ) e. CC ) | 
						
							| 15 | 3 | ffvelcdmda |  |-  ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( G ` x ) e. CC ) | 
						
							| 16 | 14 15 | subeq0ad |  |-  ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( ( F ` x ) - ( G ` x ) ) = 0 <-> ( F ` x ) = ( G ` x ) ) ) | 
						
							| 17 | 13 16 | bitrd |  |-  ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( ( F oF - G ) ` x ) = ( ( A X. { 0 } ) ` x ) <-> ( F ` x ) = ( G ` x ) ) ) | 
						
							| 18 | 17 | ralbidva |  |-  ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( A. x e. A ( ( F oF - G ) ` x ) = ( ( A X. { 0 } ) ` x ) <-> A. x e. A ( F ` x ) = ( G ` x ) ) ) | 
						
							| 19 | 2 4 5 5 6 | offn |  |-  ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( F oF - G ) Fn A ) | 
						
							| 20 | 10 | fconst |  |-  ( A X. { 0 } ) : A --> { 0 } | 
						
							| 21 |  | ffn |  |-  ( ( A X. { 0 } ) : A --> { 0 } -> ( A X. { 0 } ) Fn A ) | 
						
							| 22 | 20 21 | ax-mp |  |-  ( A X. { 0 } ) Fn A | 
						
							| 23 |  | eqfnfv |  |-  ( ( ( F oF - G ) Fn A /\ ( A X. { 0 } ) Fn A ) -> ( ( F oF - G ) = ( A X. { 0 } ) <-> A. x e. A ( ( F oF - G ) ` x ) = ( ( A X. { 0 } ) ` x ) ) ) | 
						
							| 24 | 19 22 23 | sylancl |  |-  ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( ( F oF - G ) = ( A X. { 0 } ) <-> A. x e. A ( ( F oF - G ) ` x ) = ( ( A X. { 0 } ) ` x ) ) ) | 
						
							| 25 |  | eqfnfv |  |-  ( ( F Fn A /\ G Fn A ) -> ( F = G <-> A. x e. A ( F ` x ) = ( G ` x ) ) ) | 
						
							| 26 | 2 4 25 | syl2anc |  |-  ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( F = G <-> A. x e. A ( F ` x ) = ( G ` x ) ) ) | 
						
							| 27 | 18 24 26 | 3bitr4d |  |-  ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( ( F oF - G ) = ( A X. { 0 } ) <-> F = G ) ) |