| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp2 |  |-  ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> F : A --> RR ) | 
						
							| 2 | 1 | ffvelcdmda |  |-  ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( F ` x ) e. RR ) | 
						
							| 3 |  | simp3 |  |-  ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> G : A --> RR ) | 
						
							| 4 | 3 | ffvelcdmda |  |-  ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( G ` x ) e. RR ) | 
						
							| 5 | 2 4 | subge0d |  |-  ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( 0 <_ ( ( F ` x ) - ( G ` x ) ) <-> ( G ` x ) <_ ( F ` x ) ) ) | 
						
							| 6 | 5 | ralbidva |  |-  ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( A. x e. A 0 <_ ( ( F ` x ) - ( G ` x ) ) <-> A. x e. A ( G ` x ) <_ ( F ` x ) ) ) | 
						
							| 7 |  | 0cn |  |-  0 e. CC | 
						
							| 8 |  | fnconstg |  |-  ( 0 e. CC -> ( A X. { 0 } ) Fn A ) | 
						
							| 9 | 7 8 | mp1i |  |-  ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( A X. { 0 } ) Fn A ) | 
						
							| 10 | 1 | ffnd |  |-  ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> F Fn A ) | 
						
							| 11 | 3 | ffnd |  |-  ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> G Fn A ) | 
						
							| 12 |  | simp1 |  |-  ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> A e. V ) | 
						
							| 13 |  | inidm |  |-  ( A i^i A ) = A | 
						
							| 14 | 10 11 12 12 13 | offn |  |-  ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( F oF - G ) Fn A ) | 
						
							| 15 |  | c0ex |  |-  0 e. _V | 
						
							| 16 | 15 | fvconst2 |  |-  ( x e. A -> ( ( A X. { 0 } ) ` x ) = 0 ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( ( A X. { 0 } ) ` x ) = 0 ) | 
						
							| 18 |  | eqidd |  |-  ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) | 
						
							| 19 |  | eqidd |  |-  ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) | 
						
							| 20 | 10 11 12 12 13 18 19 | ofval |  |-  ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( ( F oF - G ) ` x ) = ( ( F ` x ) - ( G ` x ) ) ) | 
						
							| 21 | 9 14 12 12 13 17 20 | ofrfval |  |-  ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( ( A X. { 0 } ) oR <_ ( F oF - G ) <-> A. x e. A 0 <_ ( ( F ` x ) - ( G ` x ) ) ) ) | 
						
							| 22 | 11 10 12 12 13 19 18 | ofrfval |  |-  ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( G oR <_ F <-> A. x e. A ( G ` x ) <_ ( F ` x ) ) ) | 
						
							| 23 | 6 21 22 | 3bitr4d |  |-  ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( ( A X. { 0 } ) oR <_ ( F oF - G ) <-> G oR <_ F ) ) |