Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
|- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> F : A --> RR ) |
2 |
1
|
ffvelrnda |
|- ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( F ` x ) e. RR ) |
3 |
|
simp3 |
|- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> G : A --> RR ) |
4 |
3
|
ffvelrnda |
|- ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( G ` x ) e. RR ) |
5 |
2 4
|
subge0d |
|- ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( 0 <_ ( ( F ` x ) - ( G ` x ) ) <-> ( G ` x ) <_ ( F ` x ) ) ) |
6 |
5
|
ralbidva |
|- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( A. x e. A 0 <_ ( ( F ` x ) - ( G ` x ) ) <-> A. x e. A ( G ` x ) <_ ( F ` x ) ) ) |
7 |
|
0cn |
|- 0 e. CC |
8 |
|
fnconstg |
|- ( 0 e. CC -> ( A X. { 0 } ) Fn A ) |
9 |
7 8
|
mp1i |
|- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( A X. { 0 } ) Fn A ) |
10 |
1
|
ffnd |
|- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> F Fn A ) |
11 |
3
|
ffnd |
|- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> G Fn A ) |
12 |
|
simp1 |
|- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> A e. V ) |
13 |
|
inidm |
|- ( A i^i A ) = A |
14 |
10 11 12 12 13
|
offn |
|- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( F oF - G ) Fn A ) |
15 |
|
c0ex |
|- 0 e. _V |
16 |
15
|
fvconst2 |
|- ( x e. A -> ( ( A X. { 0 } ) ` x ) = 0 ) |
17 |
16
|
adantl |
|- ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( ( A X. { 0 } ) ` x ) = 0 ) |
18 |
|
eqidd |
|- ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
19 |
|
eqidd |
|- ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) |
20 |
10 11 12 12 13 18 19
|
ofval |
|- ( ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) /\ x e. A ) -> ( ( F oF - G ) ` x ) = ( ( F ` x ) - ( G ` x ) ) ) |
21 |
9 14 12 12 13 17 20
|
ofrfval |
|- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( ( A X. { 0 } ) oR <_ ( F oF - G ) <-> A. x e. A 0 <_ ( ( F ` x ) - ( G ` x ) ) ) ) |
22 |
11 10 12 12 13 19 18
|
ofrfval |
|- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( G oR <_ F <-> A. x e. A ( G ` x ) <_ ( F ` x ) ) ) |
23 |
6 21 22
|
3bitr4d |
|- ( ( A e. V /\ F : A --> RR /\ G : A --> RR ) -> ( ( A X. { 0 } ) oR <_ ( F oF - G ) <-> G oR <_ F ) ) |