Step |
Hyp |
Ref |
Expression |
1 |
|
oicl.1 |
|- F = OrdIso ( R , A ) |
2 |
|
df-oi |
|- OrdIso ( R , A ) = if ( ( R We A /\ R Se A ) , ( recs ( ( h e. _V |-> ( iota_ v e. { w e. A | A. j e. ran h j R w } A. u e. { w e. A | A. j e. ran h j R w } -. u R v ) ) ) |` { x e. On | E. t e. A A. z e. ( recs ( ( h e. _V |-> ( iota_ v e. { w e. A | A. j e. ran h j R w } A. u e. { w e. A | A. j e. ran h j R w } -. u R v ) ) ) " x ) z R t } ) , (/) ) |
3 |
1 2
|
eqtri |
|- F = if ( ( R We A /\ R Se A ) , ( recs ( ( h e. _V |-> ( iota_ v e. { w e. A | A. j e. ran h j R w } A. u e. { w e. A | A. j e. ran h j R w } -. u R v ) ) ) |` { x e. On | E. t e. A A. z e. ( recs ( ( h e. _V |-> ( iota_ v e. { w e. A | A. j e. ran h j R w } A. u e. { w e. A | A. j e. ran h j R w } -. u R v ) ) ) " x ) z R t } ) , (/) ) |
4 |
|
iffalse |
|- ( -. ( R We A /\ R Se A ) -> if ( ( R We A /\ R Se A ) , ( recs ( ( h e. _V |-> ( iota_ v e. { w e. A | A. j e. ran h j R w } A. u e. { w e. A | A. j e. ran h j R w } -. u R v ) ) ) |` { x e. On | E. t e. A A. z e. ( recs ( ( h e. _V |-> ( iota_ v e. { w e. A | A. j e. ran h j R w } A. u e. { w e. A | A. j e. ran h j R w } -. u R v ) ) ) " x ) z R t } ) , (/) ) = (/) ) |
5 |
3 4
|
eqtrid |
|- ( -. ( R We A /\ R Se A ) -> F = (/) ) |