Metamath Proof Explorer


Theorem oibabs

Description: Absorption of disjunction into equivalence. (Contributed by NM, 6-Aug-1995) (Proof shortened by Wolf Lammen, 3-Nov-2013)

Ref Expression
Assertion oibabs
|- ( ( ( ph \/ ps ) -> ( ph <-> ps ) ) <-> ( ph <-> ps ) )

Proof

Step Hyp Ref Expression
1 norbi
 |-  ( -. ( ph \/ ps ) -> ( ph <-> ps ) )
2 id
 |-  ( ( ph <-> ps ) -> ( ph <-> ps ) )
3 1 2 ja
 |-  ( ( ( ph \/ ps ) -> ( ph <-> ps ) ) -> ( ph <-> ps ) )
4 ax-1
 |-  ( ( ph <-> ps ) -> ( ( ph \/ ps ) -> ( ph <-> ps ) ) )
5 3 4 impbii
 |-  ( ( ( ph \/ ps ) -> ( ph <-> ps ) ) <-> ( ph <-> ps ) )