Description: Absorption of disjunction into equivalence. (Contributed by NM, 6-Aug-1995) (Proof shortened by Wolf Lammen, 3-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | oibabs | |- ( ( ( ph \/ ps ) -> ( ph <-> ps ) ) <-> ( ph <-> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | norbi | |- ( -. ( ph \/ ps ) -> ( ph <-> ps ) ) |
|
2 | id | |- ( ( ph <-> ps ) -> ( ph <-> ps ) ) |
|
3 | 1 2 | ja | |- ( ( ( ph \/ ps ) -> ( ph <-> ps ) ) -> ( ph <-> ps ) ) |
4 | ax-1 | |- ( ( ph <-> ps ) -> ( ( ph \/ ps ) -> ( ph <-> ps ) ) ) |
|
5 | 3 4 | impbii | |- ( ( ( ph \/ ps ) -> ( ph <-> ps ) ) <-> ( ph <-> ps ) ) |