Description: Absorption of disjunction into equivalence. (Contributed by NM, 6-Aug-1995) (Proof shortened by Wolf Lammen, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oibabs | |- ( ( ( ph \/ ps ) -> ( ph <-> ps ) ) <-> ( ph <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norbi | |- ( -. ( ph \/ ps ) -> ( ph <-> ps ) ) |
|
| 2 | id | |- ( ( ph <-> ps ) -> ( ph <-> ps ) ) |
|
| 3 | 1 2 | ja | |- ( ( ( ph \/ ps ) -> ( ph <-> ps ) ) -> ( ph <-> ps ) ) |
| 4 | ax-1 | |- ( ( ph <-> ps ) -> ( ( ph \/ ps ) -> ( ph <-> ps ) ) ) |
|
| 5 | 3 4 | impbii | |- ( ( ( ph \/ ps ) -> ( ph <-> ps ) ) <-> ( ph <-> ps ) ) |