Metamath Proof Explorer


Theorem oien

Description: The order type of a well-ordered set is equinumerous to the set. (Contributed by Mario Carneiro, 23-May-2015)

Ref Expression
Hypothesis oicl.1
|- F = OrdIso ( R , A )
Assertion oien
|- ( ( A e. V /\ R We A ) -> dom F ~~ A )

Proof

Step Hyp Ref Expression
1 oicl.1
 |-  F = OrdIso ( R , A )
2 1 oiexg
 |-  ( A e. V -> F e. _V )
3 1 oiiso
 |-  ( ( A e. V /\ R We A ) -> F Isom _E , R ( dom F , A ) )
4 isof1o
 |-  ( F Isom _E , R ( dom F , A ) -> F : dom F -1-1-onto-> A )
5 3 4 syl
 |-  ( ( A e. V /\ R We A ) -> F : dom F -1-1-onto-> A )
6 f1oen3g
 |-  ( ( F e. _V /\ F : dom F -1-1-onto-> A ) -> dom F ~~ A )
7 2 5 6 syl2an2r
 |-  ( ( A e. V /\ R We A ) -> dom F ~~ A )