Description: The order type of a well-ordered set is equinumerous to the set. (Contributed by Mario Carneiro, 23-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oicl.1 | |- F = OrdIso ( R , A ) |
|
| Assertion | oien | |- ( ( A e. V /\ R We A ) -> dom F ~~ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oicl.1 | |- F = OrdIso ( R , A ) |
|
| 2 | 1 | oiexg | |- ( A e. V -> F e. _V ) |
| 3 | 1 | oiiso | |- ( ( A e. V /\ R We A ) -> F Isom _E , R ( dom F , A ) ) |
| 4 | isof1o | |- ( F Isom _E , R ( dom F , A ) -> F : dom F -1-1-onto-> A ) |
|
| 5 | 3 4 | syl | |- ( ( A e. V /\ R We A ) -> F : dom F -1-1-onto-> A ) |
| 6 | f1oen3g | |- ( ( F e. _V /\ F : dom F -1-1-onto-> A ) -> dom F ~~ A ) |
|
| 7 | 2 5 6 | syl2an2r | |- ( ( A e. V /\ R We A ) -> dom F ~~ A ) |