Metamath Proof Explorer


Theorem oion

Description: The order type of the well-order R on A is an ordinal. (Contributed by Stefan O'Rear, 11-Feb-2015) (Revised by Mario Carneiro, 23-May-2015)

Ref Expression
Hypothesis oicl.1
|- F = OrdIso ( R , A )
Assertion oion
|- ( A e. V -> dom F e. On )

Proof

Step Hyp Ref Expression
1 oicl.1
 |-  F = OrdIso ( R , A )
2 1 oicl
 |-  Ord dom F
3 1 oiexg
 |-  ( A e. V -> F e. _V )
4 dmexg
 |-  ( F e. _V -> dom F e. _V )
5 elong
 |-  ( dom F e. _V -> ( dom F e. On <-> Ord dom F ) )
6 3 4 5 3syl
 |-  ( A e. V -> ( dom F e. On <-> Ord dom F ) )
7 2 6 mpbiri
 |-  ( A e. V -> dom F e. On )