Step |
Hyp |
Ref |
Expression |
1 |
|
oismo.1 |
|- F = OrdIso ( _E , A ) |
2 |
|
epweon |
|- _E We On |
3 |
|
wess |
|- ( A C_ On -> ( _E We On -> _E We A ) ) |
4 |
2 3
|
mpi |
|- ( A C_ On -> _E We A ) |
5 |
|
epse |
|- _E Se A |
6 |
1
|
oiiso2 |
|- ( ( _E We A /\ _E Se A ) -> F Isom _E , _E ( dom F , ran F ) ) |
7 |
4 5 6
|
sylancl |
|- ( A C_ On -> F Isom _E , _E ( dom F , ran F ) ) |
8 |
1
|
oicl |
|- Ord dom F |
9 |
1
|
oif |
|- F : dom F --> A |
10 |
|
frn |
|- ( F : dom F --> A -> ran F C_ A ) |
11 |
9 10
|
ax-mp |
|- ran F C_ A |
12 |
|
id |
|- ( A C_ On -> A C_ On ) |
13 |
11 12
|
sstrid |
|- ( A C_ On -> ran F C_ On ) |
14 |
|
smoiso2 |
|- ( ( Ord dom F /\ ran F C_ On ) -> ( ( F : dom F -onto-> ran F /\ Smo F ) <-> F Isom _E , _E ( dom F , ran F ) ) ) |
15 |
8 13 14
|
sylancr |
|- ( A C_ On -> ( ( F : dom F -onto-> ran F /\ Smo F ) <-> F Isom _E , _E ( dom F , ran F ) ) ) |
16 |
7 15
|
mpbird |
|- ( A C_ On -> ( F : dom F -onto-> ran F /\ Smo F ) ) |
17 |
16
|
simprd |
|- ( A C_ On -> Smo F ) |
18 |
11
|
a1i |
|- ( A C_ On -> ran F C_ A ) |
19 |
|
simprl |
|- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> x e. A ) |
20 |
4
|
adantr |
|- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> _E We A ) |
21 |
5
|
a1i |
|- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> _E Se A ) |
22 |
|
ffn |
|- ( F : dom F --> A -> F Fn dom F ) |
23 |
9 22
|
mp1i |
|- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> F Fn dom F ) |
24 |
|
simplrr |
|- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> -. x e. ran F ) |
25 |
4
|
ad2antrr |
|- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> _E We A ) |
26 |
5
|
a1i |
|- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> _E Se A ) |
27 |
|
simplrl |
|- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> x e. A ) |
28 |
|
simpr |
|- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> y e. dom F ) |
29 |
1
|
oiiniseg |
|- ( ( ( _E We A /\ _E Se A ) /\ ( x e. A /\ y e. dom F ) ) -> ( ( F ` y ) _E x \/ x e. ran F ) ) |
30 |
25 26 27 28 29
|
syl22anc |
|- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> ( ( F ` y ) _E x \/ x e. ran F ) ) |
31 |
30
|
ord |
|- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> ( -. ( F ` y ) _E x -> x e. ran F ) ) |
32 |
24 31
|
mt3d |
|- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> ( F ` y ) _E x ) |
33 |
|
epel |
|- ( ( F ` y ) _E x <-> ( F ` y ) e. x ) |
34 |
32 33
|
sylib |
|- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> ( F ` y ) e. x ) |
35 |
34
|
ralrimiva |
|- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> A. y e. dom F ( F ` y ) e. x ) |
36 |
|
ffnfv |
|- ( F : dom F --> x <-> ( F Fn dom F /\ A. y e. dom F ( F ` y ) e. x ) ) |
37 |
23 35 36
|
sylanbrc |
|- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> F : dom F --> x ) |
38 |
9 22
|
mp1i |
|- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> F Fn dom F ) |
39 |
17
|
ad2antrr |
|- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> Smo F ) |
40 |
|
smogt |
|- ( ( F Fn dom F /\ Smo F /\ y e. dom F ) -> y C_ ( F ` y ) ) |
41 |
38 39 28 40
|
syl3anc |
|- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> y C_ ( F ` y ) ) |
42 |
|
ordelon |
|- ( ( Ord dom F /\ y e. dom F ) -> y e. On ) |
43 |
8 28 42
|
sylancr |
|- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> y e. On ) |
44 |
|
simpll |
|- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> A C_ On ) |
45 |
44 27
|
sseldd |
|- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> x e. On ) |
46 |
|
ontr2 |
|- ( ( y e. On /\ x e. On ) -> ( ( y C_ ( F ` y ) /\ ( F ` y ) e. x ) -> y e. x ) ) |
47 |
43 45 46
|
syl2anc |
|- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> ( ( y C_ ( F ` y ) /\ ( F ` y ) e. x ) -> y e. x ) ) |
48 |
41 34 47
|
mp2and |
|- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> y e. x ) |
49 |
48
|
ex |
|- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> ( y e. dom F -> y e. x ) ) |
50 |
49
|
ssrdv |
|- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> dom F C_ x ) |
51 |
19 50
|
ssexd |
|- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> dom F e. _V ) |
52 |
|
fex2 |
|- ( ( F : dom F --> x /\ dom F e. _V /\ x e. A ) -> F e. _V ) |
53 |
37 51 19 52
|
syl3anc |
|- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> F e. _V ) |
54 |
1
|
ordtype2 |
|- ( ( _E We A /\ _E Se A /\ F e. _V ) -> F Isom _E , _E ( dom F , A ) ) |
55 |
20 21 53 54
|
syl3anc |
|- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> F Isom _E , _E ( dom F , A ) ) |
56 |
|
isof1o |
|- ( F Isom _E , _E ( dom F , A ) -> F : dom F -1-1-onto-> A ) |
57 |
|
f1ofo |
|- ( F : dom F -1-1-onto-> A -> F : dom F -onto-> A ) |
58 |
|
forn |
|- ( F : dom F -onto-> A -> ran F = A ) |
59 |
55 56 57 58
|
4syl |
|- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> ran F = A ) |
60 |
19 59
|
eleqtrrd |
|- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> x e. ran F ) |
61 |
60
|
expr |
|- ( ( A C_ On /\ x e. A ) -> ( -. x e. ran F -> x e. ran F ) ) |
62 |
61
|
pm2.18d |
|- ( ( A C_ On /\ x e. A ) -> x e. ran F ) |
63 |
18 62
|
eqelssd |
|- ( A C_ On -> ran F = A ) |
64 |
17 63
|
jca |
|- ( A C_ On -> ( Smo F /\ ran F = A ) ) |