Metamath Proof Explorer


Theorem oismo

Description: When A is a subclass of On , F is a strictly monotone ordinal functions, and it is also complete (it is an isomorphism onto all of A ). The proof avoids ax-rep (the second statement is trivial under ax-rep ). (Contributed by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypothesis oismo.1
|- F = OrdIso ( _E , A )
Assertion oismo
|- ( A C_ On -> ( Smo F /\ ran F = A ) )

Proof

Step Hyp Ref Expression
1 oismo.1
 |-  F = OrdIso ( _E , A )
2 epweon
 |-  _E We On
3 wess
 |-  ( A C_ On -> ( _E We On -> _E We A ) )
4 2 3 mpi
 |-  ( A C_ On -> _E We A )
5 epse
 |-  _E Se A
6 1 oiiso2
 |-  ( ( _E We A /\ _E Se A ) -> F Isom _E , _E ( dom F , ran F ) )
7 4 5 6 sylancl
 |-  ( A C_ On -> F Isom _E , _E ( dom F , ran F ) )
8 1 oicl
 |-  Ord dom F
9 1 oif
 |-  F : dom F --> A
10 frn
 |-  ( F : dom F --> A -> ran F C_ A )
11 9 10 ax-mp
 |-  ran F C_ A
12 id
 |-  ( A C_ On -> A C_ On )
13 11 12 sstrid
 |-  ( A C_ On -> ran F C_ On )
14 smoiso2
 |-  ( ( Ord dom F /\ ran F C_ On ) -> ( ( F : dom F -onto-> ran F /\ Smo F ) <-> F Isom _E , _E ( dom F , ran F ) ) )
15 8 13 14 sylancr
 |-  ( A C_ On -> ( ( F : dom F -onto-> ran F /\ Smo F ) <-> F Isom _E , _E ( dom F , ran F ) ) )
16 7 15 mpbird
 |-  ( A C_ On -> ( F : dom F -onto-> ran F /\ Smo F ) )
17 16 simprd
 |-  ( A C_ On -> Smo F )
18 11 a1i
 |-  ( A C_ On -> ran F C_ A )
19 simprl
 |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> x e. A )
20 4 adantr
 |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> _E We A )
21 5 a1i
 |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> _E Se A )
22 ffn
 |-  ( F : dom F --> A -> F Fn dom F )
23 9 22 mp1i
 |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> F Fn dom F )
24 simplrr
 |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> -. x e. ran F )
25 4 ad2antrr
 |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> _E We A )
26 5 a1i
 |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> _E Se A )
27 simplrl
 |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> x e. A )
28 simpr
 |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> y e. dom F )
29 1 oiiniseg
 |-  ( ( ( _E We A /\ _E Se A ) /\ ( x e. A /\ y e. dom F ) ) -> ( ( F ` y ) _E x \/ x e. ran F ) )
30 25 26 27 28 29 syl22anc
 |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> ( ( F ` y ) _E x \/ x e. ran F ) )
31 30 ord
 |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> ( -. ( F ` y ) _E x -> x e. ran F ) )
32 24 31 mt3d
 |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> ( F ` y ) _E x )
33 epel
 |-  ( ( F ` y ) _E x <-> ( F ` y ) e. x )
34 32 33 sylib
 |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> ( F ` y ) e. x )
35 34 ralrimiva
 |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> A. y e. dom F ( F ` y ) e. x )
36 ffnfv
 |-  ( F : dom F --> x <-> ( F Fn dom F /\ A. y e. dom F ( F ` y ) e. x ) )
37 23 35 36 sylanbrc
 |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> F : dom F --> x )
38 9 22 mp1i
 |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> F Fn dom F )
39 17 ad2antrr
 |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> Smo F )
40 smogt
 |-  ( ( F Fn dom F /\ Smo F /\ y e. dom F ) -> y C_ ( F ` y ) )
41 38 39 28 40 syl3anc
 |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> y C_ ( F ` y ) )
42 ordelon
 |-  ( ( Ord dom F /\ y e. dom F ) -> y e. On )
43 8 28 42 sylancr
 |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> y e. On )
44 simpll
 |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> A C_ On )
45 44 27 sseldd
 |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> x e. On )
46 ontr2
 |-  ( ( y e. On /\ x e. On ) -> ( ( y C_ ( F ` y ) /\ ( F ` y ) e. x ) -> y e. x ) )
47 43 45 46 syl2anc
 |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> ( ( y C_ ( F ` y ) /\ ( F ` y ) e. x ) -> y e. x ) )
48 41 34 47 mp2and
 |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> y e. x )
49 48 ex
 |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> ( y e. dom F -> y e. x ) )
50 49 ssrdv
 |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> dom F C_ x )
51 19 50 ssexd
 |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> dom F e. _V )
52 fex2
 |-  ( ( F : dom F --> x /\ dom F e. _V /\ x e. A ) -> F e. _V )
53 37 51 19 52 syl3anc
 |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> F e. _V )
54 1 ordtype2
 |-  ( ( _E We A /\ _E Se A /\ F e. _V ) -> F Isom _E , _E ( dom F , A ) )
55 20 21 53 54 syl3anc
 |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> F Isom _E , _E ( dom F , A ) )
56 isof1o
 |-  ( F Isom _E , _E ( dom F , A ) -> F : dom F -1-1-onto-> A )
57 f1ofo
 |-  ( F : dom F -1-1-onto-> A -> F : dom F -onto-> A )
58 forn
 |-  ( F : dom F -onto-> A -> ran F = A )
59 55 56 57 58 4syl
 |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> ran F = A )
60 19 59 eleqtrrd
 |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> x e. ran F )
61 60 expr
 |-  ( ( A C_ On /\ x e. A ) -> ( -. x e. ran F -> x e. ran F ) )
62 61 pm2.18d
 |-  ( ( A C_ On /\ x e. A ) -> x e. ran F )
63 18 62 eqelssd
 |-  ( A C_ On -> ran F = A )
64 17 63 jca
 |-  ( A C_ On -> ( Smo F /\ ran F = A ) )