Metamath Proof Explorer


Theorem old1

Description: The only surreal older than 1o is 0s . (Contributed by Scott Fenton, 4-Feb-2025)

Ref Expression
Assertion old1
|- ( _Old ` 1o ) = { 0s }

Proof

Step Hyp Ref Expression
1 1on
 |-  1o e. On
2 oldval
 |-  ( 1o e. On -> ( _Old ` 1o ) = U. ( _Made " 1o ) )
3 1 2 ax-mp
 |-  ( _Old ` 1o ) = U. ( _Made " 1o )
4 df1o2
 |-  1o = { (/) }
5 4 imaeq2i
 |-  ( _Made " 1o ) = ( _Made " { (/) } )
6 madef
 |-  _Made : On --> ~P No
7 ffn
 |-  ( _Made : On --> ~P No -> _Made Fn On )
8 6 7 ax-mp
 |-  _Made Fn On
9 0elon
 |-  (/) e. On
10 fnsnfv
 |-  ( ( _Made Fn On /\ (/) e. On ) -> { ( _Made ` (/) ) } = ( _Made " { (/) } ) )
11 8 9 10 mp2an
 |-  { ( _Made ` (/) ) } = ( _Made " { (/) } )
12 5 11 eqtr4i
 |-  ( _Made " 1o ) = { ( _Made ` (/) ) }
13 12 unieqi
 |-  U. ( _Made " 1o ) = U. { ( _Made ` (/) ) }
14 fvex
 |-  ( _Made ` (/) ) e. _V
15 14 unisn
 |-  U. { ( _Made ` (/) ) } = ( _Made ` (/) )
16 made0
 |-  ( _Made ` (/) ) = { 0s }
17 15 16 eqtri
 |-  U. { ( _Made ` (/) ) } = { 0s }
18 13 17 eqtri
 |-  U. ( _Made " 1o ) = { 0s }
19 3 18 eqtri
 |-  ( _Old ` 1o ) = { 0s }