| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							olj0.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							olj0.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							olj0.z | 
							 |-  .0. = ( 0. ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							ollat | 
							 |-  ( K e. OL -> K e. Lat )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( K e. OL /\ X e. B ) -> K e. Lat )  | 
						
						
							| 6 | 
							
								
							 | 
							olop | 
							 |-  ( K e. OL -> K e. OP )  | 
						
						
							| 7 | 
							
								1 3
							 | 
							op0cl | 
							 |-  ( K e. OP -> .0. e. B )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							syl | 
							 |-  ( K e. OL -> .0. e. B )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( K e. OL /\ X e. B ) -> .0. e. B )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr | 
							 |-  ( ( K e. OL /\ X e. B ) -> X e. B )  | 
						
						
							| 11 | 
							
								1 2
							 | 
							latjcom | 
							 |-  ( ( K e. Lat /\ .0. e. B /\ X e. B ) -> ( .0. .\/ X ) = ( X .\/ .0. ) )  | 
						
						
							| 12 | 
							
								5 9 10 11
							 | 
							syl3anc | 
							 |-  ( ( K e. OL /\ X e. B ) -> ( .0. .\/ X ) = ( X .\/ .0. ) )  | 
						
						
							| 13 | 
							
								1 2 3
							 | 
							olj01 | 
							 |-  ( ( K e. OL /\ X e. B ) -> ( X .\/ .0. ) = X )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							eqtrd | 
							 |-  ( ( K e. OL /\ X e. B ) -> ( .0. .\/ X ) = X )  |