Metamath Proof Explorer


Theorem olj02

Description: An ortholattice element joined with zero equals itself. (Contributed by NM, 28-Jan-2012)

Ref Expression
Hypotheses olj0.b
|- B = ( Base ` K )
olj0.j
|- .\/ = ( join ` K )
olj0.z
|- .0. = ( 0. ` K )
Assertion olj02
|- ( ( K e. OL /\ X e. B ) -> ( .0. .\/ X ) = X )

Proof

Step Hyp Ref Expression
1 olj0.b
 |-  B = ( Base ` K )
2 olj0.j
 |-  .\/ = ( join ` K )
3 olj0.z
 |-  .0. = ( 0. ` K )
4 ollat
 |-  ( K e. OL -> K e. Lat )
5 4 adantr
 |-  ( ( K e. OL /\ X e. B ) -> K e. Lat )
6 olop
 |-  ( K e. OL -> K e. OP )
7 1 3 op0cl
 |-  ( K e. OP -> .0. e. B )
8 6 7 syl
 |-  ( K e. OL -> .0. e. B )
9 8 adantr
 |-  ( ( K e. OL /\ X e. B ) -> .0. e. B )
10 simpr
 |-  ( ( K e. OL /\ X e. B ) -> X e. B )
11 1 2 latjcom
 |-  ( ( K e. Lat /\ .0. e. B /\ X e. B ) -> ( .0. .\/ X ) = ( X .\/ .0. ) )
12 5 9 10 11 syl3anc
 |-  ( ( K e. OL /\ X e. B ) -> ( .0. .\/ X ) = ( X .\/ .0. ) )
13 1 2 3 olj01
 |-  ( ( K e. OL /\ X e. B ) -> ( X .\/ .0. ) = X )
14 12 13 eqtrd
 |-  ( ( K e. OL /\ X e. B ) -> ( .0. .\/ X ) = X )