Step |
Hyp |
Ref |
Expression |
1 |
|
olm0.b |
|- B = ( Base ` K ) |
2 |
|
olm0.m |
|- ./\ = ( meet ` K ) |
3 |
|
olm0.z |
|- .0. = ( 0. ` K ) |
4 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
5 |
|
ollat |
|- ( K e. OL -> K e. Lat ) |
6 |
5
|
adantr |
|- ( ( K e. OL /\ X e. B ) -> K e. Lat ) |
7 |
|
simpr |
|- ( ( K e. OL /\ X e. B ) -> X e. B ) |
8 |
|
olop |
|- ( K e. OL -> K e. OP ) |
9 |
8
|
adantr |
|- ( ( K e. OL /\ X e. B ) -> K e. OP ) |
10 |
1 3
|
op0cl |
|- ( K e. OP -> .0. e. B ) |
11 |
9 10
|
syl |
|- ( ( K e. OL /\ X e. B ) -> .0. e. B ) |
12 |
1 2
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ .0. e. B ) -> ( X ./\ .0. ) e. B ) |
13 |
6 7 11 12
|
syl3anc |
|- ( ( K e. OL /\ X e. B ) -> ( X ./\ .0. ) e. B ) |
14 |
1 4 2
|
latmle2 |
|- ( ( K e. Lat /\ X e. B /\ .0. e. B ) -> ( X ./\ .0. ) ( le ` K ) .0. ) |
15 |
6 7 11 14
|
syl3anc |
|- ( ( K e. OL /\ X e. B ) -> ( X ./\ .0. ) ( le ` K ) .0. ) |
16 |
1 4 3
|
op0le |
|- ( ( K e. OP /\ X e. B ) -> .0. ( le ` K ) X ) |
17 |
8 16
|
sylan |
|- ( ( K e. OL /\ X e. B ) -> .0. ( le ` K ) X ) |
18 |
1 4
|
latref |
|- ( ( K e. Lat /\ .0. e. B ) -> .0. ( le ` K ) .0. ) |
19 |
6 11 18
|
syl2anc |
|- ( ( K e. OL /\ X e. B ) -> .0. ( le ` K ) .0. ) |
20 |
1 4 2
|
latlem12 |
|- ( ( K e. Lat /\ ( .0. e. B /\ X e. B /\ .0. e. B ) ) -> ( ( .0. ( le ` K ) X /\ .0. ( le ` K ) .0. ) <-> .0. ( le ` K ) ( X ./\ .0. ) ) ) |
21 |
6 11 7 11 20
|
syl13anc |
|- ( ( K e. OL /\ X e. B ) -> ( ( .0. ( le ` K ) X /\ .0. ( le ` K ) .0. ) <-> .0. ( le ` K ) ( X ./\ .0. ) ) ) |
22 |
17 19 21
|
mpbi2and |
|- ( ( K e. OL /\ X e. B ) -> .0. ( le ` K ) ( X ./\ .0. ) ) |
23 |
1 4 6 13 11 15 22
|
latasymd |
|- ( ( K e. OL /\ X e. B ) -> ( X ./\ .0. ) = .0. ) |