Step |
Hyp |
Ref |
Expression |
1 |
|
olm0.b |
|- B = ( Base ` K ) |
2 |
|
olm0.m |
|- ./\ = ( meet ` K ) |
3 |
|
olm0.z |
|- .0. = ( 0. ` K ) |
4 |
|
ollat |
|- ( K e. OL -> K e. Lat ) |
5 |
4
|
adantr |
|- ( ( K e. OL /\ X e. B ) -> K e. Lat ) |
6 |
|
simpr |
|- ( ( K e. OL /\ X e. B ) -> X e. B ) |
7 |
|
olop |
|- ( K e. OL -> K e. OP ) |
8 |
7
|
adantr |
|- ( ( K e. OL /\ X e. B ) -> K e. OP ) |
9 |
1 3
|
op0cl |
|- ( K e. OP -> .0. e. B ) |
10 |
8 9
|
syl |
|- ( ( K e. OL /\ X e. B ) -> .0. e. B ) |
11 |
1 2
|
latmcom |
|- ( ( K e. Lat /\ X e. B /\ .0. e. B ) -> ( X ./\ .0. ) = ( .0. ./\ X ) ) |
12 |
5 6 10 11
|
syl3anc |
|- ( ( K e. OL /\ X e. B ) -> ( X ./\ .0. ) = ( .0. ./\ X ) ) |
13 |
1 2 3
|
olm01 |
|- ( ( K e. OL /\ X e. B ) -> ( X ./\ .0. ) = .0. ) |
14 |
12 13
|
eqtr3d |
|- ( ( K e. OL /\ X e. B ) -> ( .0. ./\ X ) = .0. ) |