| Step |
Hyp |
Ref |
Expression |
| 1 |
|
olm1.b |
|- B = ( Base ` K ) |
| 2 |
|
olm1.m |
|- ./\ = ( meet ` K ) |
| 3 |
|
olm1.u |
|- .1. = ( 1. ` K ) |
| 4 |
|
olop |
|- ( K e. OL -> K e. OP ) |
| 5 |
4
|
adantr |
|- ( ( K e. OL /\ X e. B ) -> K e. OP ) |
| 6 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 7 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
| 8 |
6 3 7
|
opoc1 |
|- ( K e. OP -> ( ( oc ` K ) ` .1. ) = ( 0. ` K ) ) |
| 9 |
5 8
|
syl |
|- ( ( K e. OL /\ X e. B ) -> ( ( oc ` K ) ` .1. ) = ( 0. ` K ) ) |
| 10 |
9
|
oveq2d |
|- ( ( K e. OL /\ X e. B ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` .1. ) ) = ( ( ( oc ` K ) ` X ) ( join ` K ) ( 0. ` K ) ) ) |
| 11 |
1 7
|
opoccl |
|- ( ( K e. OP /\ X e. B ) -> ( ( oc ` K ) ` X ) e. B ) |
| 12 |
4 11
|
sylan |
|- ( ( K e. OL /\ X e. B ) -> ( ( oc ` K ) ` X ) e. B ) |
| 13 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 14 |
1 13 6
|
olj01 |
|- ( ( K e. OL /\ ( ( oc ` K ) ` X ) e. B ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) ( 0. ` K ) ) = ( ( oc ` K ) ` X ) ) |
| 15 |
12 14
|
syldan |
|- ( ( K e. OL /\ X e. B ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) ( 0. ` K ) ) = ( ( oc ` K ) ` X ) ) |
| 16 |
10 15
|
eqtrd |
|- ( ( K e. OL /\ X e. B ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` .1. ) ) = ( ( oc ` K ) ` X ) ) |
| 17 |
16
|
fveq2d |
|- ( ( K e. OL /\ X e. B ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` .1. ) ) ) = ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) ) |
| 18 |
1 3
|
op1cl |
|- ( K e. OP -> .1. e. B ) |
| 19 |
5 18
|
syl |
|- ( ( K e. OL /\ X e. B ) -> .1. e. B ) |
| 20 |
1 13 2 7
|
oldmj4 |
|- ( ( K e. OL /\ X e. B /\ .1. e. B ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` .1. ) ) ) = ( X ./\ .1. ) ) |
| 21 |
19 20
|
mpd3an3 |
|- ( ( K e. OL /\ X e. B ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` .1. ) ) ) = ( X ./\ .1. ) ) |
| 22 |
1 7
|
opococ |
|- ( ( K e. OP /\ X e. B ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) = X ) |
| 23 |
4 22
|
sylan |
|- ( ( K e. OL /\ X e. B ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) = X ) |
| 24 |
17 21 23
|
3eqtr3d |
|- ( ( K e. OL /\ X e. B ) -> ( X ./\ .1. ) = X ) |