Metamath Proof Explorer


Theorem olop

Description: An ortholattice is an orthoposet. (Contributed by NM, 18-Sep-2011)

Ref Expression
Assertion olop
|- ( K e. OL -> K e. OP )

Proof

Step Hyp Ref Expression
1 isolat
 |-  ( K e. OL <-> ( K e. Lat /\ K e. OP ) )
2 1 simprbi
 |-  ( K e. OL -> K e. OP )