Metamath Proof Explorer


Theorem om0

Description: Ordinal multiplication with zero. Definition 8.15(a) of TakeutiZaring p. 62. See om0x for a way to remove the antecedent A e. On . (Contributed by NM, 17-Sep-1995) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion om0
|- ( A e. On -> ( A .o (/) ) = (/) )

Proof

Step Hyp Ref Expression
1 0elon
 |-  (/) e. On
2 omv
 |-  ( ( A e. On /\ (/) e. On ) -> ( A .o (/) ) = ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` (/) ) )
3 1 2 mpan2
 |-  ( A e. On -> ( A .o (/) ) = ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` (/) ) )
4 0ex
 |-  (/) e. _V
5 4 rdg0
 |-  ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` (/) ) = (/)
6 3 5 eqtrdi
 |-  ( A e. On -> ( A .o (/) ) = (/) )