Step |
Hyp |
Ref |
Expression |
1 |
|
neanior |
|- ( ( A =/= (/) /\ B =/= (/) ) <-> -. ( A = (/) \/ B = (/) ) ) |
2 |
|
eloni |
|- ( A e. On -> Ord A ) |
3 |
|
ordge1n0 |
|- ( Ord A -> ( 1o C_ A <-> A =/= (/) ) ) |
4 |
2 3
|
syl |
|- ( A e. On -> ( 1o C_ A <-> A =/= (/) ) ) |
5 |
4
|
biimprd |
|- ( A e. On -> ( A =/= (/) -> 1o C_ A ) ) |
6 |
5
|
adantr |
|- ( ( A e. On /\ B e. On ) -> ( A =/= (/) -> 1o C_ A ) ) |
7 |
|
on0eln0 |
|- ( B e. On -> ( (/) e. B <-> B =/= (/) ) ) |
8 |
7
|
adantl |
|- ( ( A e. On /\ B e. On ) -> ( (/) e. B <-> B =/= (/) ) ) |
9 |
|
omword1 |
|- ( ( ( A e. On /\ B e. On ) /\ (/) e. B ) -> A C_ ( A .o B ) ) |
10 |
9
|
ex |
|- ( ( A e. On /\ B e. On ) -> ( (/) e. B -> A C_ ( A .o B ) ) ) |
11 |
8 10
|
sylbird |
|- ( ( A e. On /\ B e. On ) -> ( B =/= (/) -> A C_ ( A .o B ) ) ) |
12 |
6 11
|
anim12d |
|- ( ( A e. On /\ B e. On ) -> ( ( A =/= (/) /\ B =/= (/) ) -> ( 1o C_ A /\ A C_ ( A .o B ) ) ) ) |
13 |
|
sstr |
|- ( ( 1o C_ A /\ A C_ ( A .o B ) ) -> 1o C_ ( A .o B ) ) |
14 |
12 13
|
syl6 |
|- ( ( A e. On /\ B e. On ) -> ( ( A =/= (/) /\ B =/= (/) ) -> 1o C_ ( A .o B ) ) ) |
15 |
1 14
|
syl5bir |
|- ( ( A e. On /\ B e. On ) -> ( -. ( A = (/) \/ B = (/) ) -> 1o C_ ( A .o B ) ) ) |
16 |
|
omcl |
|- ( ( A e. On /\ B e. On ) -> ( A .o B ) e. On ) |
17 |
|
eloni |
|- ( ( A .o B ) e. On -> Ord ( A .o B ) ) |
18 |
|
ordge1n0 |
|- ( Ord ( A .o B ) -> ( 1o C_ ( A .o B ) <-> ( A .o B ) =/= (/) ) ) |
19 |
16 17 18
|
3syl |
|- ( ( A e. On /\ B e. On ) -> ( 1o C_ ( A .o B ) <-> ( A .o B ) =/= (/) ) ) |
20 |
15 19
|
sylibd |
|- ( ( A e. On /\ B e. On ) -> ( -. ( A = (/) \/ B = (/) ) -> ( A .o B ) =/= (/) ) ) |
21 |
20
|
necon4bd |
|- ( ( A e. On /\ B e. On ) -> ( ( A .o B ) = (/) -> ( A = (/) \/ B = (/) ) ) ) |
22 |
|
oveq1 |
|- ( A = (/) -> ( A .o B ) = ( (/) .o B ) ) |
23 |
|
om0r |
|- ( B e. On -> ( (/) .o B ) = (/) ) |
24 |
22 23
|
sylan9eqr |
|- ( ( B e. On /\ A = (/) ) -> ( A .o B ) = (/) ) |
25 |
24
|
ex |
|- ( B e. On -> ( A = (/) -> ( A .o B ) = (/) ) ) |
26 |
25
|
adantl |
|- ( ( A e. On /\ B e. On ) -> ( A = (/) -> ( A .o B ) = (/) ) ) |
27 |
|
oveq2 |
|- ( B = (/) -> ( A .o B ) = ( A .o (/) ) ) |
28 |
|
om0 |
|- ( A e. On -> ( A .o (/) ) = (/) ) |
29 |
27 28
|
sylan9eqr |
|- ( ( A e. On /\ B = (/) ) -> ( A .o B ) = (/) ) |
30 |
29
|
ex |
|- ( A e. On -> ( B = (/) -> ( A .o B ) = (/) ) ) |
31 |
30
|
adantr |
|- ( ( A e. On /\ B e. On ) -> ( B = (/) -> ( A .o B ) = (/) ) ) |
32 |
26 31
|
jaod |
|- ( ( A e. On /\ B e. On ) -> ( ( A = (/) \/ B = (/) ) -> ( A .o B ) = (/) ) ) |
33 |
21 32
|
impbid |
|- ( ( A e. On /\ B e. On ) -> ( ( A .o B ) = (/) <-> ( A = (/) \/ B = (/) ) ) ) |