| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om00 |  |-  ( ( A e. On /\ B e. On ) -> ( ( A .o B ) = (/) <-> ( A = (/) \/ B = (/) ) ) ) | 
						
							| 2 | 1 | necon3abid |  |-  ( ( A e. On /\ B e. On ) -> ( ( A .o B ) =/= (/) <-> -. ( A = (/) \/ B = (/) ) ) ) | 
						
							| 3 |  | omcl |  |-  ( ( A e. On /\ B e. On ) -> ( A .o B ) e. On ) | 
						
							| 4 |  | on0eln0 |  |-  ( ( A .o B ) e. On -> ( (/) e. ( A .o B ) <-> ( A .o B ) =/= (/) ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( ( A e. On /\ B e. On ) -> ( (/) e. ( A .o B ) <-> ( A .o B ) =/= (/) ) ) | 
						
							| 6 |  | on0eln0 |  |-  ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) | 
						
							| 7 |  | on0eln0 |  |-  ( B e. On -> ( (/) e. B <-> B =/= (/) ) ) | 
						
							| 8 | 6 7 | bi2anan9 |  |-  ( ( A e. On /\ B e. On ) -> ( ( (/) e. A /\ (/) e. B ) <-> ( A =/= (/) /\ B =/= (/) ) ) ) | 
						
							| 9 |  | neanior |  |-  ( ( A =/= (/) /\ B =/= (/) ) <-> -. ( A = (/) \/ B = (/) ) ) | 
						
							| 10 | 8 9 | bitrdi |  |-  ( ( A e. On /\ B e. On ) -> ( ( (/) e. A /\ (/) e. B ) <-> -. ( A = (/) \/ B = (/) ) ) ) | 
						
							| 11 | 2 5 10 | 3bitr4d |  |-  ( ( A e. On /\ B e. On ) -> ( (/) e. ( A .o B ) <-> ( (/) e. A /\ (/) e. B ) ) ) |