Step |
Hyp |
Ref |
Expression |
1 |
|
om00 |
|- ( ( A e. On /\ B e. On ) -> ( ( A .o B ) = (/) <-> ( A = (/) \/ B = (/) ) ) ) |
2 |
1
|
necon3abid |
|- ( ( A e. On /\ B e. On ) -> ( ( A .o B ) =/= (/) <-> -. ( A = (/) \/ B = (/) ) ) ) |
3 |
|
omcl |
|- ( ( A e. On /\ B e. On ) -> ( A .o B ) e. On ) |
4 |
|
on0eln0 |
|- ( ( A .o B ) e. On -> ( (/) e. ( A .o B ) <-> ( A .o B ) =/= (/) ) ) |
5 |
3 4
|
syl |
|- ( ( A e. On /\ B e. On ) -> ( (/) e. ( A .o B ) <-> ( A .o B ) =/= (/) ) ) |
6 |
|
on0eln0 |
|- ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) |
7 |
|
on0eln0 |
|- ( B e. On -> ( (/) e. B <-> B =/= (/) ) ) |
8 |
6 7
|
bi2anan9 |
|- ( ( A e. On /\ B e. On ) -> ( ( (/) e. A /\ (/) e. B ) <-> ( A =/= (/) /\ B =/= (/) ) ) ) |
9 |
|
neanior |
|- ( ( A =/= (/) /\ B =/= (/) ) <-> -. ( A = (/) \/ B = (/) ) ) |
10 |
8 9
|
bitrdi |
|- ( ( A e. On /\ B e. On ) -> ( ( (/) e. A /\ (/) e. B ) <-> -. ( A = (/) \/ B = (/) ) ) ) |
11 |
2 5 10
|
3bitr4d |
|- ( ( A e. On /\ B e. On ) -> ( (/) e. ( A .o B ) <-> ( (/) e. A /\ (/) e. B ) ) ) |