Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( x = (/) -> ( (/) .o x ) = ( (/) .o (/) ) ) |
2 |
1
|
eqeq1d |
|- ( x = (/) -> ( ( (/) .o x ) = (/) <-> ( (/) .o (/) ) = (/) ) ) |
3 |
|
oveq2 |
|- ( x = y -> ( (/) .o x ) = ( (/) .o y ) ) |
4 |
3
|
eqeq1d |
|- ( x = y -> ( ( (/) .o x ) = (/) <-> ( (/) .o y ) = (/) ) ) |
5 |
|
oveq2 |
|- ( x = suc y -> ( (/) .o x ) = ( (/) .o suc y ) ) |
6 |
5
|
eqeq1d |
|- ( x = suc y -> ( ( (/) .o x ) = (/) <-> ( (/) .o suc y ) = (/) ) ) |
7 |
|
oveq2 |
|- ( x = A -> ( (/) .o x ) = ( (/) .o A ) ) |
8 |
7
|
eqeq1d |
|- ( x = A -> ( ( (/) .o x ) = (/) <-> ( (/) .o A ) = (/) ) ) |
9 |
|
0elon |
|- (/) e. On |
10 |
|
om0 |
|- ( (/) e. On -> ( (/) .o (/) ) = (/) ) |
11 |
9 10
|
ax-mp |
|- ( (/) .o (/) ) = (/) |
12 |
|
oveq1 |
|- ( ( (/) .o y ) = (/) -> ( ( (/) .o y ) +o (/) ) = ( (/) +o (/) ) ) |
13 |
|
omsuc |
|- ( ( (/) e. On /\ y e. On ) -> ( (/) .o suc y ) = ( ( (/) .o y ) +o (/) ) ) |
14 |
9 13
|
mpan |
|- ( y e. On -> ( (/) .o suc y ) = ( ( (/) .o y ) +o (/) ) ) |
15 |
|
oa0 |
|- ( (/) e. On -> ( (/) +o (/) ) = (/) ) |
16 |
9 15
|
ax-mp |
|- ( (/) +o (/) ) = (/) |
17 |
16
|
eqcomi |
|- (/) = ( (/) +o (/) ) |
18 |
17
|
a1i |
|- ( y e. On -> (/) = ( (/) +o (/) ) ) |
19 |
14 18
|
eqeq12d |
|- ( y e. On -> ( ( (/) .o suc y ) = (/) <-> ( ( (/) .o y ) +o (/) ) = ( (/) +o (/) ) ) ) |
20 |
12 19
|
syl5ibr |
|- ( y e. On -> ( ( (/) .o y ) = (/) -> ( (/) .o suc y ) = (/) ) ) |
21 |
|
iuneq2 |
|- ( A. y e. x ( (/) .o y ) = (/) -> U_ y e. x ( (/) .o y ) = U_ y e. x (/) ) |
22 |
|
iun0 |
|- U_ y e. x (/) = (/) |
23 |
21 22
|
eqtrdi |
|- ( A. y e. x ( (/) .o y ) = (/) -> U_ y e. x ( (/) .o y ) = (/) ) |
24 |
|
vex |
|- x e. _V |
25 |
|
omlim |
|- ( ( (/) e. On /\ ( x e. _V /\ Lim x ) ) -> ( (/) .o x ) = U_ y e. x ( (/) .o y ) ) |
26 |
9 25
|
mpan |
|- ( ( x e. _V /\ Lim x ) -> ( (/) .o x ) = U_ y e. x ( (/) .o y ) ) |
27 |
24 26
|
mpan |
|- ( Lim x -> ( (/) .o x ) = U_ y e. x ( (/) .o y ) ) |
28 |
27
|
eqeq1d |
|- ( Lim x -> ( ( (/) .o x ) = (/) <-> U_ y e. x ( (/) .o y ) = (/) ) ) |
29 |
23 28
|
syl5ibr |
|- ( Lim x -> ( A. y e. x ( (/) .o y ) = (/) -> ( (/) .o x ) = (/) ) ) |
30 |
2 4 6 8 11 20 29
|
tfinds |
|- ( A e. On -> ( (/) .o A ) = (/) ) |