Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( x = (/) -> ( 1o .o x ) = ( 1o .o (/) ) ) |
2 |
|
id |
|- ( x = (/) -> x = (/) ) |
3 |
1 2
|
eqeq12d |
|- ( x = (/) -> ( ( 1o .o x ) = x <-> ( 1o .o (/) ) = (/) ) ) |
4 |
|
oveq2 |
|- ( x = y -> ( 1o .o x ) = ( 1o .o y ) ) |
5 |
|
id |
|- ( x = y -> x = y ) |
6 |
4 5
|
eqeq12d |
|- ( x = y -> ( ( 1o .o x ) = x <-> ( 1o .o y ) = y ) ) |
7 |
|
oveq2 |
|- ( x = suc y -> ( 1o .o x ) = ( 1o .o suc y ) ) |
8 |
|
id |
|- ( x = suc y -> x = suc y ) |
9 |
7 8
|
eqeq12d |
|- ( x = suc y -> ( ( 1o .o x ) = x <-> ( 1o .o suc y ) = suc y ) ) |
10 |
|
oveq2 |
|- ( x = A -> ( 1o .o x ) = ( 1o .o A ) ) |
11 |
|
id |
|- ( x = A -> x = A ) |
12 |
10 11
|
eqeq12d |
|- ( x = A -> ( ( 1o .o x ) = x <-> ( 1o .o A ) = A ) ) |
13 |
|
1on |
|- 1o e. On |
14 |
|
om0 |
|- ( 1o e. On -> ( 1o .o (/) ) = (/) ) |
15 |
13 14
|
ax-mp |
|- ( 1o .o (/) ) = (/) |
16 |
|
omsuc |
|- ( ( 1o e. On /\ y e. On ) -> ( 1o .o suc y ) = ( ( 1o .o y ) +o 1o ) ) |
17 |
13 16
|
mpan |
|- ( y e. On -> ( 1o .o suc y ) = ( ( 1o .o y ) +o 1o ) ) |
18 |
|
oveq1 |
|- ( ( 1o .o y ) = y -> ( ( 1o .o y ) +o 1o ) = ( y +o 1o ) ) |
19 |
17 18
|
sylan9eq |
|- ( ( y e. On /\ ( 1o .o y ) = y ) -> ( 1o .o suc y ) = ( y +o 1o ) ) |
20 |
|
oa1suc |
|- ( y e. On -> ( y +o 1o ) = suc y ) |
21 |
20
|
adantr |
|- ( ( y e. On /\ ( 1o .o y ) = y ) -> ( y +o 1o ) = suc y ) |
22 |
19 21
|
eqtrd |
|- ( ( y e. On /\ ( 1o .o y ) = y ) -> ( 1o .o suc y ) = suc y ) |
23 |
22
|
ex |
|- ( y e. On -> ( ( 1o .o y ) = y -> ( 1o .o suc y ) = suc y ) ) |
24 |
|
iuneq2 |
|- ( A. y e. x ( 1o .o y ) = y -> U_ y e. x ( 1o .o y ) = U_ y e. x y ) |
25 |
|
uniiun |
|- U. x = U_ y e. x y |
26 |
24 25
|
eqtr4di |
|- ( A. y e. x ( 1o .o y ) = y -> U_ y e. x ( 1o .o y ) = U. x ) |
27 |
|
vex |
|- x e. _V |
28 |
|
omlim |
|- ( ( 1o e. On /\ ( x e. _V /\ Lim x ) ) -> ( 1o .o x ) = U_ y e. x ( 1o .o y ) ) |
29 |
13 28
|
mpan |
|- ( ( x e. _V /\ Lim x ) -> ( 1o .o x ) = U_ y e. x ( 1o .o y ) ) |
30 |
27 29
|
mpan |
|- ( Lim x -> ( 1o .o x ) = U_ y e. x ( 1o .o y ) ) |
31 |
|
limuni |
|- ( Lim x -> x = U. x ) |
32 |
30 31
|
eqeq12d |
|- ( Lim x -> ( ( 1o .o x ) = x <-> U_ y e. x ( 1o .o y ) = U. x ) ) |
33 |
26 32
|
syl5ibr |
|- ( Lim x -> ( A. y e. x ( 1o .o y ) = y -> ( 1o .o x ) = x ) ) |
34 |
3 6 9 12 15 23 33
|
tfinds |
|- ( A e. On -> ( 1o .o A ) = A ) |