| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om2uz.1 |
|- C e. ZZ |
| 2 |
|
om2uz.2 |
|- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
| 3 |
|
frfnom |
|- ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) Fn _om |
| 4 |
2
|
fneq1i |
|- ( G Fn _om <-> ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) Fn _om ) |
| 5 |
3 4
|
mpbir |
|- G Fn _om |
| 6 |
|
fvelrnb |
|- ( G Fn _om -> ( y e. ran G <-> E. z e. _om ( G ` z ) = y ) ) |
| 7 |
5 6
|
ax-mp |
|- ( y e. ran G <-> E. z e. _om ( G ` z ) = y ) |
| 8 |
1 2
|
om2uzuzi |
|- ( z e. _om -> ( G ` z ) e. ( ZZ>= ` C ) ) |
| 9 |
|
eleq1 |
|- ( ( G ` z ) = y -> ( ( G ` z ) e. ( ZZ>= ` C ) <-> y e. ( ZZ>= ` C ) ) ) |
| 10 |
8 9
|
syl5ibcom |
|- ( z e. _om -> ( ( G ` z ) = y -> y e. ( ZZ>= ` C ) ) ) |
| 11 |
10
|
rexlimiv |
|- ( E. z e. _om ( G ` z ) = y -> y e. ( ZZ>= ` C ) ) |
| 12 |
7 11
|
sylbi |
|- ( y e. ran G -> y e. ( ZZ>= ` C ) ) |
| 13 |
|
eleq1 |
|- ( z = C -> ( z e. ran G <-> C e. ran G ) ) |
| 14 |
|
eleq1 |
|- ( z = y -> ( z e. ran G <-> y e. ran G ) ) |
| 15 |
|
eleq1 |
|- ( z = ( y + 1 ) -> ( z e. ran G <-> ( y + 1 ) e. ran G ) ) |
| 16 |
1 2
|
om2uz0i |
|- ( G ` (/) ) = C |
| 17 |
|
peano1 |
|- (/) e. _om |
| 18 |
|
fnfvelrn |
|- ( ( G Fn _om /\ (/) e. _om ) -> ( G ` (/) ) e. ran G ) |
| 19 |
5 17 18
|
mp2an |
|- ( G ` (/) ) e. ran G |
| 20 |
16 19
|
eqeltrri |
|- C e. ran G |
| 21 |
1 2
|
om2uzsuci |
|- ( z e. _om -> ( G ` suc z ) = ( ( G ` z ) + 1 ) ) |
| 22 |
|
oveq1 |
|- ( ( G ` z ) = y -> ( ( G ` z ) + 1 ) = ( y + 1 ) ) |
| 23 |
21 22
|
sylan9eq |
|- ( ( z e. _om /\ ( G ` z ) = y ) -> ( G ` suc z ) = ( y + 1 ) ) |
| 24 |
|
peano2 |
|- ( z e. _om -> suc z e. _om ) |
| 25 |
|
fnfvelrn |
|- ( ( G Fn _om /\ suc z e. _om ) -> ( G ` suc z ) e. ran G ) |
| 26 |
5 24 25
|
sylancr |
|- ( z e. _om -> ( G ` suc z ) e. ran G ) |
| 27 |
26
|
adantr |
|- ( ( z e. _om /\ ( G ` z ) = y ) -> ( G ` suc z ) e. ran G ) |
| 28 |
23 27
|
eqeltrrd |
|- ( ( z e. _om /\ ( G ` z ) = y ) -> ( y + 1 ) e. ran G ) |
| 29 |
28
|
rexlimiva |
|- ( E. z e. _om ( G ` z ) = y -> ( y + 1 ) e. ran G ) |
| 30 |
7 29
|
sylbi |
|- ( y e. ran G -> ( y + 1 ) e. ran G ) |
| 31 |
30
|
a1i |
|- ( y e. ( ZZ>= ` C ) -> ( y e. ran G -> ( y + 1 ) e. ran G ) ) |
| 32 |
13 14 15 14 20 31
|
uzind4i |
|- ( y e. ( ZZ>= ` C ) -> y e. ran G ) |
| 33 |
12 32
|
impbii |
|- ( y e. ran G <-> y e. ( ZZ>= ` C ) ) |
| 34 |
33
|
eqriv |
|- ran G = ( ZZ>= ` C ) |