| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om2uz.1 |
|- C e. ZZ |
| 2 |
|
om2uz.2 |
|- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
| 3 |
|
uzrdg.1 |
|- A e. _V |
| 4 |
|
uzrdg.2 |
|- R = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) |
| 5 |
|
fveq2 |
|- ( z = (/) -> ( R ` z ) = ( R ` (/) ) ) |
| 6 |
|
fveq2 |
|- ( z = (/) -> ( G ` z ) = ( G ` (/) ) ) |
| 7 |
|
2fveq3 |
|- ( z = (/) -> ( 2nd ` ( R ` z ) ) = ( 2nd ` ( R ` (/) ) ) ) |
| 8 |
6 7
|
opeq12d |
|- ( z = (/) -> <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. = <. ( G ` (/) ) , ( 2nd ` ( R ` (/) ) ) >. ) |
| 9 |
5 8
|
eqeq12d |
|- ( z = (/) -> ( ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. <-> ( R ` (/) ) = <. ( G ` (/) ) , ( 2nd ` ( R ` (/) ) ) >. ) ) |
| 10 |
|
fveq2 |
|- ( z = v -> ( R ` z ) = ( R ` v ) ) |
| 11 |
|
fveq2 |
|- ( z = v -> ( G ` z ) = ( G ` v ) ) |
| 12 |
|
2fveq3 |
|- ( z = v -> ( 2nd ` ( R ` z ) ) = ( 2nd ` ( R ` v ) ) ) |
| 13 |
11 12
|
opeq12d |
|- ( z = v -> <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) |
| 14 |
10 13
|
eqeq12d |
|- ( z = v -> ( ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. <-> ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) |
| 15 |
|
fveq2 |
|- ( z = suc v -> ( R ` z ) = ( R ` suc v ) ) |
| 16 |
|
fveq2 |
|- ( z = suc v -> ( G ` z ) = ( G ` suc v ) ) |
| 17 |
|
2fveq3 |
|- ( z = suc v -> ( 2nd ` ( R ` z ) ) = ( 2nd ` ( R ` suc v ) ) ) |
| 18 |
16 17
|
opeq12d |
|- ( z = suc v -> <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. = <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. ) |
| 19 |
15 18
|
eqeq12d |
|- ( z = suc v -> ( ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. <-> ( R ` suc v ) = <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. ) ) |
| 20 |
|
fveq2 |
|- ( z = B -> ( R ` z ) = ( R ` B ) ) |
| 21 |
|
fveq2 |
|- ( z = B -> ( G ` z ) = ( G ` B ) ) |
| 22 |
|
2fveq3 |
|- ( z = B -> ( 2nd ` ( R ` z ) ) = ( 2nd ` ( R ` B ) ) ) |
| 23 |
21 22
|
opeq12d |
|- ( z = B -> <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. = <. ( G ` B ) , ( 2nd ` ( R ` B ) ) >. ) |
| 24 |
20 23
|
eqeq12d |
|- ( z = B -> ( ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. <-> ( R ` B ) = <. ( G ` B ) , ( 2nd ` ( R ` B ) ) >. ) ) |
| 25 |
4
|
fveq1i |
|- ( R ` (/) ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) |
| 26 |
|
opex |
|- <. C , A >. e. _V |
| 27 |
|
fr0g |
|- ( <. C , A >. e. _V -> ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) = <. C , A >. ) |
| 28 |
26 27
|
ax-mp |
|- ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) = <. C , A >. |
| 29 |
25 28
|
eqtri |
|- ( R ` (/) ) = <. C , A >. |
| 30 |
1 2
|
om2uz0i |
|- ( G ` (/) ) = C |
| 31 |
29
|
fveq2i |
|- ( 2nd ` ( R ` (/) ) ) = ( 2nd ` <. C , A >. ) |
| 32 |
1
|
elexi |
|- C e. _V |
| 33 |
32 3
|
op2nd |
|- ( 2nd ` <. C , A >. ) = A |
| 34 |
31 33
|
eqtri |
|- ( 2nd ` ( R ` (/) ) ) = A |
| 35 |
30 34
|
opeq12i |
|- <. ( G ` (/) ) , ( 2nd ` ( R ` (/) ) ) >. = <. C , A >. |
| 36 |
29 35
|
eqtr4i |
|- ( R ` (/) ) = <. ( G ` (/) ) , ( 2nd ` ( R ` (/) ) ) >. |
| 37 |
|
frsuc |
|- ( v e. _om -> ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc v ) = ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` v ) ) ) |
| 38 |
4
|
fveq1i |
|- ( R ` suc v ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc v ) |
| 39 |
4
|
fveq1i |
|- ( R ` v ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` v ) |
| 40 |
39
|
fveq2i |
|- ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( R ` v ) ) = ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` v ) ) |
| 41 |
37 38 40
|
3eqtr4g |
|- ( v e. _om -> ( R ` suc v ) = ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( R ` v ) ) ) |
| 42 |
|
fveq2 |
|- ( ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. -> ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( R ` v ) ) = ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) |
| 43 |
|
df-ov |
|- ( ( G ` v ) ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ( 2nd ` ( R ` v ) ) ) = ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) |
| 44 |
|
fvex |
|- ( G ` v ) e. _V |
| 45 |
|
fvex |
|- ( 2nd ` ( R ` v ) ) e. _V |
| 46 |
|
oveq1 |
|- ( w = ( G ` v ) -> ( w + 1 ) = ( ( G ` v ) + 1 ) ) |
| 47 |
|
oveq1 |
|- ( w = ( G ` v ) -> ( w F z ) = ( ( G ` v ) F z ) ) |
| 48 |
46 47
|
opeq12d |
|- ( w = ( G ` v ) -> <. ( w + 1 ) , ( w F z ) >. = <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F z ) >. ) |
| 49 |
|
oveq2 |
|- ( z = ( 2nd ` ( R ` v ) ) -> ( ( G ` v ) F z ) = ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) ) |
| 50 |
49
|
opeq2d |
|- ( z = ( 2nd ` ( R ` v ) ) -> <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F z ) >. = <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) |
| 51 |
|
oveq1 |
|- ( x = w -> ( x + 1 ) = ( w + 1 ) ) |
| 52 |
|
oveq1 |
|- ( x = w -> ( x F y ) = ( w F y ) ) |
| 53 |
51 52
|
opeq12d |
|- ( x = w -> <. ( x + 1 ) , ( x F y ) >. = <. ( w + 1 ) , ( w F y ) >. ) |
| 54 |
|
oveq2 |
|- ( y = z -> ( w F y ) = ( w F z ) ) |
| 55 |
54
|
opeq2d |
|- ( y = z -> <. ( w + 1 ) , ( w F y ) >. = <. ( w + 1 ) , ( w F z ) >. ) |
| 56 |
53 55
|
cbvmpov |
|- ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) = ( w e. _V , z e. _V |-> <. ( w + 1 ) , ( w F z ) >. ) |
| 57 |
|
opex |
|- <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. e. _V |
| 58 |
48 50 56 57
|
ovmpo |
|- ( ( ( G ` v ) e. _V /\ ( 2nd ` ( R ` v ) ) e. _V ) -> ( ( G ` v ) ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ( 2nd ` ( R ` v ) ) ) = <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) |
| 59 |
44 45 58
|
mp2an |
|- ( ( G ` v ) ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ( 2nd ` ( R ` v ) ) ) = <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. |
| 60 |
43 59
|
eqtr3i |
|- ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) = <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. |
| 61 |
42 60
|
eqtrdi |
|- ( ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. -> ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( R ` v ) ) = <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) |
| 62 |
41 61
|
sylan9eq |
|- ( ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) -> ( R ` suc v ) = <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) |
| 63 |
1 2
|
om2uzsuci |
|- ( v e. _om -> ( G ` suc v ) = ( ( G ` v ) + 1 ) ) |
| 64 |
63
|
adantr |
|- ( ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) -> ( G ` suc v ) = ( ( G ` v ) + 1 ) ) |
| 65 |
62
|
fveq2d |
|- ( ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) -> ( 2nd ` ( R ` suc v ) ) = ( 2nd ` <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) ) |
| 66 |
|
ovex |
|- ( ( G ` v ) + 1 ) e. _V |
| 67 |
|
ovex |
|- ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) e. _V |
| 68 |
66 67
|
op2nd |
|- ( 2nd ` <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) = ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) |
| 69 |
65 68
|
eqtrdi |
|- ( ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) -> ( 2nd ` ( R ` suc v ) ) = ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) ) |
| 70 |
64 69
|
opeq12d |
|- ( ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) -> <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. = <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) |
| 71 |
62 70
|
eqtr4d |
|- ( ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) -> ( R ` suc v ) = <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. ) |
| 72 |
71
|
ex |
|- ( v e. _om -> ( ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. -> ( R ` suc v ) = <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. ) ) |
| 73 |
9 14 19 24 36 72
|
finds |
|- ( B e. _om -> ( R ` B ) = <. ( G ` B ) , ( 2nd ` ( R ` B ) ) >. ) |