Step |
Hyp |
Ref |
Expression |
1 |
|
om2uz.1 |
|- C e. ZZ |
2 |
|
om2uz.2 |
|- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
3 |
|
suceq |
|- ( z = A -> suc z = suc A ) |
4 |
3
|
fveq2d |
|- ( z = A -> ( G ` suc z ) = ( G ` suc A ) ) |
5 |
|
fveq2 |
|- ( z = A -> ( G ` z ) = ( G ` A ) ) |
6 |
5
|
oveq1d |
|- ( z = A -> ( ( G ` z ) + 1 ) = ( ( G ` A ) + 1 ) ) |
7 |
4 6
|
eqeq12d |
|- ( z = A -> ( ( G ` suc z ) = ( ( G ` z ) + 1 ) <-> ( G ` suc A ) = ( ( G ` A ) + 1 ) ) ) |
8 |
|
ovex |
|- ( ( G ` z ) + 1 ) e. _V |
9 |
|
oveq1 |
|- ( y = x -> ( y + 1 ) = ( x + 1 ) ) |
10 |
|
oveq1 |
|- ( y = ( G ` z ) -> ( y + 1 ) = ( ( G ` z ) + 1 ) ) |
11 |
2 9 10
|
frsucmpt2 |
|- ( ( z e. _om /\ ( ( G ` z ) + 1 ) e. _V ) -> ( G ` suc z ) = ( ( G ` z ) + 1 ) ) |
12 |
8 11
|
mpan2 |
|- ( z e. _om -> ( G ` suc z ) = ( ( G ` z ) + 1 ) ) |
13 |
7 12
|
vtoclga |
|- ( A e. _om -> ( G ` suc A ) = ( ( G ` A ) + 1 ) ) |