Step |
Hyp |
Ref |
Expression |
1 |
|
om2uz.1 |
|- C e. ZZ |
2 |
|
om2uz.2 |
|- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
3 |
|
fveq2 |
|- ( y = (/) -> ( G ` y ) = ( G ` (/) ) ) |
4 |
3
|
eleq1d |
|- ( y = (/) -> ( ( G ` y ) e. ( ZZ>= ` C ) <-> ( G ` (/) ) e. ( ZZ>= ` C ) ) ) |
5 |
|
fveq2 |
|- ( y = z -> ( G ` y ) = ( G ` z ) ) |
6 |
5
|
eleq1d |
|- ( y = z -> ( ( G ` y ) e. ( ZZ>= ` C ) <-> ( G ` z ) e. ( ZZ>= ` C ) ) ) |
7 |
|
fveq2 |
|- ( y = suc z -> ( G ` y ) = ( G ` suc z ) ) |
8 |
7
|
eleq1d |
|- ( y = suc z -> ( ( G ` y ) e. ( ZZ>= ` C ) <-> ( G ` suc z ) e. ( ZZ>= ` C ) ) ) |
9 |
|
fveq2 |
|- ( y = A -> ( G ` y ) = ( G ` A ) ) |
10 |
9
|
eleq1d |
|- ( y = A -> ( ( G ` y ) e. ( ZZ>= ` C ) <-> ( G ` A ) e. ( ZZ>= ` C ) ) ) |
11 |
1 2
|
om2uz0i |
|- ( G ` (/) ) = C |
12 |
|
uzid |
|- ( C e. ZZ -> C e. ( ZZ>= ` C ) ) |
13 |
1 12
|
ax-mp |
|- C e. ( ZZ>= ` C ) |
14 |
11 13
|
eqeltri |
|- ( G ` (/) ) e. ( ZZ>= ` C ) |
15 |
|
peano2uz |
|- ( ( G ` z ) e. ( ZZ>= ` C ) -> ( ( G ` z ) + 1 ) e. ( ZZ>= ` C ) ) |
16 |
1 2
|
om2uzsuci |
|- ( z e. _om -> ( G ` suc z ) = ( ( G ` z ) + 1 ) ) |
17 |
16
|
eleq1d |
|- ( z e. _om -> ( ( G ` suc z ) e. ( ZZ>= ` C ) <-> ( ( G ` z ) + 1 ) e. ( ZZ>= ` C ) ) ) |
18 |
15 17
|
syl5ibr |
|- ( z e. _om -> ( ( G ` z ) e. ( ZZ>= ` C ) -> ( G ` suc z ) e. ( ZZ>= ` C ) ) ) |
19 |
4 6 8 10 14 18
|
finds |
|- ( A e. _om -> ( G ` A ) e. ( ZZ>= ` C ) ) |