Step |
Hyp |
Ref |
Expression |
1 |
|
isfi |
|- ( _om e. Fin <-> E. x e. _om _om ~~ x ) |
2 |
|
nnord |
|- ( x e. _om -> Ord x ) |
3 |
|
ordom |
|- Ord _om |
4 |
|
ordelssne |
|- ( ( Ord x /\ Ord _om ) -> ( x e. _om <-> ( x C_ _om /\ x =/= _om ) ) ) |
5 |
2 3 4
|
sylancl |
|- ( x e. _om -> ( x e. _om <-> ( x C_ _om /\ x =/= _om ) ) ) |
6 |
5
|
ibi |
|- ( x e. _om -> ( x C_ _om /\ x =/= _om ) ) |
7 |
|
df-pss |
|- ( x C. _om <-> ( x C_ _om /\ x =/= _om ) ) |
8 |
6 7
|
sylibr |
|- ( x e. _om -> x C. _om ) |
9 |
|
ensym |
|- ( _om ~~ x -> x ~~ _om ) |
10 |
|
pssinf |
|- ( ( x C. _om /\ x ~~ _om ) -> -. _om e. Fin ) |
11 |
8 9 10
|
syl2an |
|- ( ( x e. _om /\ _om ~~ x ) -> -. _om e. Fin ) |
12 |
11
|
rexlimiva |
|- ( E. x e. _om _om ~~ x -> -. _om e. Fin ) |
13 |
1 12
|
sylbi |
|- ( _om e. Fin -> -. _om e. Fin ) |
14 |
|
pm2.01 |
|- ( ( _om e. Fin -> -. _om e. Fin ) -> -. _om e. Fin ) |
15 |
13 14
|
ax-mp |
|- -. _om e. Fin |