| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isfi |  |-  ( _om e. Fin <-> E. x e. _om _om ~~ x ) | 
						
							| 2 |  | nnord |  |-  ( x e. _om -> Ord x ) | 
						
							| 3 |  | ordom |  |-  Ord _om | 
						
							| 4 |  | ordelssne |  |-  ( ( Ord x /\ Ord _om ) -> ( x e. _om <-> ( x C_ _om /\ x =/= _om ) ) ) | 
						
							| 5 | 2 3 4 | sylancl |  |-  ( x e. _om -> ( x e. _om <-> ( x C_ _om /\ x =/= _om ) ) ) | 
						
							| 6 | 5 | ibi |  |-  ( x e. _om -> ( x C_ _om /\ x =/= _om ) ) | 
						
							| 7 |  | df-pss |  |-  ( x C. _om <-> ( x C_ _om /\ x =/= _om ) ) | 
						
							| 8 | 6 7 | sylibr |  |-  ( x e. _om -> x C. _om ) | 
						
							| 9 |  | ensym |  |-  ( _om ~~ x -> x ~~ _om ) | 
						
							| 10 |  | pssinf |  |-  ( ( x C. _om /\ x ~~ _om ) -> -. _om e. Fin ) | 
						
							| 11 | 8 9 10 | syl2an |  |-  ( ( x e. _om /\ _om ~~ x ) -> -. _om e. Fin ) | 
						
							| 12 | 11 | rexlimiva |  |-  ( E. x e. _om _om ~~ x -> -. _om e. Fin ) | 
						
							| 13 | 1 12 | sylbi |  |-  ( _om e. Fin -> -. _om e. Fin ) | 
						
							| 14 |  | pm2.01 |  |-  ( ( _om e. Fin -> -. _om e. Fin ) -> -. _om e. Fin ) | 
						
							| 15 | 13 14 | ax-mp |  |-  -. _om e. Fin |