Step |
Hyp |
Ref |
Expression |
1 |
|
omlfh1.b |
|- B = ( Base ` K ) |
2 |
|
omlfh1.j |
|- .\/ = ( join ` K ) |
3 |
|
omlfh1.m |
|- ./\ = ( meet ` K ) |
4 |
|
omlfh1.c |
|- C = ( cm ` K ) |
5 |
|
omllat |
|- ( K e. OML -> K e. Lat ) |
6 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
7 |
1 6 2 3
|
latledi |
|- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ( le ` K ) ( X ./\ ( Y .\/ Z ) ) ) |
8 |
5 7
|
sylan |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ( le ` K ) ( X ./\ ( Y .\/ Z ) ) ) |
9 |
8
|
3adant3 |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X C Y /\ X C Z ) ) -> ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ( le ` K ) ( X ./\ ( Y .\/ Z ) ) ) |
10 |
5
|
adantr |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. Lat ) |
11 |
|
simpr1 |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> X e. B ) |
12 |
|
simpr2 |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Y e. B ) |
13 |
|
simpr3 |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Z e. B ) |
14 |
1 2
|
latjcl |
|- ( ( K e. Lat /\ Y e. B /\ Z e. B ) -> ( Y .\/ Z ) e. B ) |
15 |
10 12 13 14
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y .\/ Z ) e. B ) |
16 |
1 3
|
latmcom |
|- ( ( K e. Lat /\ X e. B /\ ( Y .\/ Z ) e. B ) -> ( X ./\ ( Y .\/ Z ) ) = ( ( Y .\/ Z ) ./\ X ) ) |
17 |
10 11 15 16
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ ( Y .\/ Z ) ) = ( ( Y .\/ Z ) ./\ X ) ) |
18 |
|
omlol |
|- ( K e. OML -> K e. OL ) |
19 |
18
|
adantr |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. OL ) |
20 |
1 3
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) e. B ) |
21 |
10 11 12 20
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Y ) e. B ) |
22 |
1 3
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ Z e. B ) -> ( X ./\ Z ) e. B ) |
23 |
10 11 13 22
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Z ) e. B ) |
24 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
25 |
1 2 3 24
|
oldmj1 |
|- ( ( K e. OL /\ ( X ./\ Y ) e. B /\ ( X ./\ Z ) e. B ) -> ( ( oc ` K ) ` ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ) = ( ( ( oc ` K ) ` ( X ./\ Y ) ) ./\ ( ( oc ` K ) ` ( X ./\ Z ) ) ) ) |
26 |
19 21 23 25
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ) = ( ( ( oc ` K ) ` ( X ./\ Y ) ) ./\ ( ( oc ` K ) ` ( X ./\ Z ) ) ) ) |
27 |
1 2 3 24
|
oldmm1 |
|- ( ( K e. OL /\ X e. B /\ Y e. B ) -> ( ( oc ` K ) ` ( X ./\ Y ) ) = ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ) |
28 |
19 11 12 27
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` ( X ./\ Y ) ) = ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ) |
29 |
1 2 3 24
|
oldmm1 |
|- ( ( K e. OL /\ X e. B /\ Z e. B ) -> ( ( oc ` K ) ` ( X ./\ Z ) ) = ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) |
30 |
19 11 13 29
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` ( X ./\ Z ) ) = ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) |
31 |
28 30
|
oveq12d |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( oc ` K ) ` ( X ./\ Y ) ) ./\ ( ( oc ` K ) ` ( X ./\ Z ) ) ) = ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) ) |
32 |
26 31
|
eqtrd |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ) = ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) ) |
33 |
17 32
|
oveq12d |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ ( Y .\/ Z ) ) ./\ ( ( oc ` K ) ` ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ) ) = ( ( ( Y .\/ Z ) ./\ X ) ./\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) ) ) |
34 |
33
|
3adant3 |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X C Y /\ X C Z ) ) -> ( ( X ./\ ( Y .\/ Z ) ) ./\ ( ( oc ` K ) ` ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ) ) = ( ( ( Y .\/ Z ) ./\ X ) ./\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) ) ) |
35 |
|
omlop |
|- ( K e. OML -> K e. OP ) |
36 |
35
|
adantr |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. OP ) |
37 |
1 24
|
opoccl |
|- ( ( K e. OP /\ X e. B ) -> ( ( oc ` K ) ` X ) e. B ) |
38 |
36 11 37
|
syl2anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` X ) e. B ) |
39 |
1 24
|
opoccl |
|- ( ( K e. OP /\ Y e. B ) -> ( ( oc ` K ) ` Y ) e. B ) |
40 |
36 12 39
|
syl2anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` Y ) e. B ) |
41 |
1 2
|
latjcl |
|- ( ( K e. Lat /\ ( ( oc ` K ) ` X ) e. B /\ ( ( oc ` K ) ` Y ) e. B ) -> ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) e. B ) |
42 |
10 38 40 41
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) e. B ) |
43 |
1 24
|
opoccl |
|- ( ( K e. OP /\ Z e. B ) -> ( ( oc ` K ) ` Z ) e. B ) |
44 |
36 13 43
|
syl2anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` Z ) e. B ) |
45 |
1 2
|
latjcl |
|- ( ( K e. Lat /\ ( ( oc ` K ) ` X ) e. B /\ ( ( oc ` K ) ` Z ) e. B ) -> ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) e. B ) |
46 |
10 38 44 45
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) e. B ) |
47 |
1 3
|
latmcl |
|- ( ( K e. Lat /\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) e. B /\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) e. B ) -> ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) e. B ) |
48 |
10 42 46 47
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) e. B ) |
49 |
1 3
|
latmassOLD |
|- ( ( K e. OL /\ ( ( Y .\/ Z ) e. B /\ X e. B /\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) e. B ) ) -> ( ( ( Y .\/ Z ) ./\ X ) ./\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) ) = ( ( Y .\/ Z ) ./\ ( X ./\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) ) ) ) |
50 |
19 15 11 48 49
|
syl13anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( Y .\/ Z ) ./\ X ) ./\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) ) = ( ( Y .\/ Z ) ./\ ( X ./\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) ) ) ) |
51 |
50
|
3adant3 |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X C Y /\ X C Z ) ) -> ( ( ( Y .\/ Z ) ./\ X ) ./\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) ) = ( ( Y .\/ Z ) ./\ ( X ./\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) ) ) ) |
52 |
1 24 4
|
cmt2N |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X C Y <-> X C ( ( oc ` K ) ` Y ) ) ) |
53 |
52
|
3adant3r3 |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X C Y <-> X C ( ( oc ` K ) ` Y ) ) ) |
54 |
|
simpl |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. OML ) |
55 |
1 2 3 24 4
|
cmtbr3N |
|- ( ( K e. OML /\ X e. B /\ ( ( oc ` K ) ` Y ) e. B ) -> ( X C ( ( oc ` K ) ` Y ) <-> ( X ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ) = ( X ./\ ( ( oc ` K ) ` Y ) ) ) ) |
56 |
54 11 40 55
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X C ( ( oc ` K ) ` Y ) <-> ( X ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ) = ( X ./\ ( ( oc ` K ) ` Y ) ) ) ) |
57 |
53 56
|
bitrd |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X C Y <-> ( X ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ) = ( X ./\ ( ( oc ` K ) ` Y ) ) ) ) |
58 |
57
|
biimpa |
|- ( ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X C Y ) -> ( X ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ) = ( X ./\ ( ( oc ` K ) ` Y ) ) ) |
59 |
58
|
adantrr |
|- ( ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ ( X C Y /\ X C Z ) ) -> ( X ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ) = ( X ./\ ( ( oc ` K ) ` Y ) ) ) |
60 |
59
|
3impa |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X C Y /\ X C Z ) ) -> ( X ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ) = ( X ./\ ( ( oc ` K ) ` Y ) ) ) |
61 |
1 24 4
|
cmt2N |
|- ( ( K e. OML /\ X e. B /\ Z e. B ) -> ( X C Z <-> X C ( ( oc ` K ) ` Z ) ) ) |
62 |
61
|
3adant3r2 |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X C Z <-> X C ( ( oc ` K ) ` Z ) ) ) |
63 |
1 2 3 24 4
|
cmtbr3N |
|- ( ( K e. OML /\ X e. B /\ ( ( oc ` K ) ` Z ) e. B ) -> ( X C ( ( oc ` K ) ` Z ) <-> ( X ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) = ( X ./\ ( ( oc ` K ) ` Z ) ) ) ) |
64 |
54 11 44 63
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X C ( ( oc ` K ) ` Z ) <-> ( X ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) = ( X ./\ ( ( oc ` K ) ` Z ) ) ) ) |
65 |
62 64
|
bitrd |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X C Z <-> ( X ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) = ( X ./\ ( ( oc ` K ) ` Z ) ) ) ) |
66 |
65
|
biimpa |
|- ( ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X C Z ) -> ( X ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) = ( X ./\ ( ( oc ` K ) ` Z ) ) ) |
67 |
66
|
adantrl |
|- ( ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ ( X C Y /\ X C Z ) ) -> ( X ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) = ( X ./\ ( ( oc ` K ) ` Z ) ) ) |
68 |
67
|
3impa |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X C Y /\ X C Z ) ) -> ( X ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) = ( X ./\ ( ( oc ` K ) ` Z ) ) ) |
69 |
60 68
|
oveq12d |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X C Y /\ X C Z ) ) -> ( ( X ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ) ./\ ( X ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) ) = ( ( X ./\ ( ( oc ` K ) ` Y ) ) ./\ ( X ./\ ( ( oc ` K ) ` Z ) ) ) ) |
70 |
1 3
|
latmmdiN |
|- ( ( K e. OL /\ ( X e. B /\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) e. B /\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) e. B ) ) -> ( X ./\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) ) = ( ( X ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ) ./\ ( X ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) ) ) |
71 |
19 11 42 46 70
|
syl13anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) ) = ( ( X ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ) ./\ ( X ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) ) ) |
72 |
71
|
3adant3 |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X C Y /\ X C Z ) ) -> ( X ./\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) ) = ( ( X ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ) ./\ ( X ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) ) ) |
73 |
1 3
|
latmmdiN |
|- ( ( K e. OL /\ ( X e. B /\ ( ( oc ` K ) ` Y ) e. B /\ ( ( oc ` K ) ` Z ) e. B ) ) -> ( X ./\ ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` Z ) ) ) = ( ( X ./\ ( ( oc ` K ) ` Y ) ) ./\ ( X ./\ ( ( oc ` K ) ` Z ) ) ) ) |
74 |
19 11 40 44 73
|
syl13anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` Z ) ) ) = ( ( X ./\ ( ( oc ` K ) ` Y ) ) ./\ ( X ./\ ( ( oc ` K ) ` Z ) ) ) ) |
75 |
74
|
3adant3 |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X C Y /\ X C Z ) ) -> ( X ./\ ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` Z ) ) ) = ( ( X ./\ ( ( oc ` K ) ` Y ) ) ./\ ( X ./\ ( ( oc ` K ) ` Z ) ) ) ) |
76 |
69 72 75
|
3eqtr4d |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X C Y /\ X C Z ) ) -> ( X ./\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) ) = ( X ./\ ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` Z ) ) ) ) |
77 |
76
|
oveq2d |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X C Y /\ X C Z ) ) -> ( ( Y .\/ Z ) ./\ ( X ./\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) ) ) = ( ( Y .\/ Z ) ./\ ( X ./\ ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` Z ) ) ) ) ) |
78 |
1 3
|
latmcl |
|- ( ( K e. Lat /\ ( ( oc ` K ) ` Y ) e. B /\ ( ( oc ` K ) ` Z ) e. B ) -> ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` Z ) ) e. B ) |
79 |
10 40 44 78
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` Z ) ) e. B ) |
80 |
1 3
|
latm12 |
|- ( ( K e. OL /\ ( ( Y .\/ Z ) e. B /\ X e. B /\ ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` Z ) ) e. B ) ) -> ( ( Y .\/ Z ) ./\ ( X ./\ ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` Z ) ) ) ) = ( X ./\ ( ( Y .\/ Z ) ./\ ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` Z ) ) ) ) ) |
81 |
19 15 11 79 80
|
syl13anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( Y .\/ Z ) ./\ ( X ./\ ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` Z ) ) ) ) = ( X ./\ ( ( Y .\/ Z ) ./\ ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` Z ) ) ) ) ) |
82 |
81
|
3adant3 |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X C Y /\ X C Z ) ) -> ( ( Y .\/ Z ) ./\ ( X ./\ ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` Z ) ) ) ) = ( X ./\ ( ( Y .\/ Z ) ./\ ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` Z ) ) ) ) ) |
83 |
51 77 82
|
3eqtrd |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X C Y /\ X C Z ) ) -> ( ( ( Y .\/ Z ) ./\ X ) ./\ ( ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ./\ ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Z ) ) ) ) = ( X ./\ ( ( Y .\/ Z ) ./\ ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` Z ) ) ) ) ) |
84 |
1 2 3 24
|
oldmj1 |
|- ( ( K e. OL /\ Y e. B /\ Z e. B ) -> ( ( oc ` K ) ` ( Y .\/ Z ) ) = ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` Z ) ) ) |
85 |
19 12 13 84
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` ( Y .\/ Z ) ) = ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` Z ) ) ) |
86 |
85
|
oveq2d |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( Y .\/ Z ) ./\ ( ( oc ` K ) ` ( Y .\/ Z ) ) ) = ( ( Y .\/ Z ) ./\ ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` Z ) ) ) ) |
87 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
88 |
1 24 3 87
|
opnoncon |
|- ( ( K e. OP /\ ( Y .\/ Z ) e. B ) -> ( ( Y .\/ Z ) ./\ ( ( oc ` K ) ` ( Y .\/ Z ) ) ) = ( 0. ` K ) ) |
89 |
36 15 88
|
syl2anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( Y .\/ Z ) ./\ ( ( oc ` K ) ` ( Y .\/ Z ) ) ) = ( 0. ` K ) ) |
90 |
86 89
|
eqtr3d |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( Y .\/ Z ) ./\ ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` Z ) ) ) = ( 0. ` K ) ) |
91 |
90
|
oveq2d |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ ( ( Y .\/ Z ) ./\ ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` Z ) ) ) ) = ( X ./\ ( 0. ` K ) ) ) |
92 |
1 3 87
|
olm01 |
|- ( ( K e. OL /\ X e. B ) -> ( X ./\ ( 0. ` K ) ) = ( 0. ` K ) ) |
93 |
19 11 92
|
syl2anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ ( 0. ` K ) ) = ( 0. ` K ) ) |
94 |
91 93
|
eqtrd |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ ( ( Y .\/ Z ) ./\ ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` Z ) ) ) ) = ( 0. ` K ) ) |
95 |
94
|
3adant3 |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X C Y /\ X C Z ) ) -> ( X ./\ ( ( Y .\/ Z ) ./\ ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` Z ) ) ) ) = ( 0. ` K ) ) |
96 |
34 83 95
|
3eqtrd |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X C Y /\ X C Z ) ) -> ( ( X ./\ ( Y .\/ Z ) ) ./\ ( ( oc ` K ) ` ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ) ) = ( 0. ` K ) ) |
97 |
1 2
|
latjcl |
|- ( ( K e. Lat /\ ( X ./\ Y ) e. B /\ ( X ./\ Z ) e. B ) -> ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) e. B ) |
98 |
10 21 23 97
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) e. B ) |
99 |
1 3
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ ( Y .\/ Z ) e. B ) -> ( X ./\ ( Y .\/ Z ) ) e. B ) |
100 |
10 11 15 99
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ ( Y .\/ Z ) ) e. B ) |
101 |
1 6 3 24 87
|
omllaw3 |
|- ( ( K e. OML /\ ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) e. B /\ ( X ./\ ( Y .\/ Z ) ) e. B ) -> ( ( ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ( le ` K ) ( X ./\ ( Y .\/ Z ) ) /\ ( ( X ./\ ( Y .\/ Z ) ) ./\ ( ( oc ` K ) ` ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ) ) = ( 0. ` K ) ) -> ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) = ( X ./\ ( Y .\/ Z ) ) ) ) |
102 |
54 98 100 101
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ( le ` K ) ( X ./\ ( Y .\/ Z ) ) /\ ( ( X ./\ ( Y .\/ Z ) ) ./\ ( ( oc ` K ) ` ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ) ) = ( 0. ` K ) ) -> ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) = ( X ./\ ( Y .\/ Z ) ) ) ) |
103 |
102
|
3adant3 |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X C Y /\ X C Z ) ) -> ( ( ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ( le ` K ) ( X ./\ ( Y .\/ Z ) ) /\ ( ( X ./\ ( Y .\/ Z ) ) ./\ ( ( oc ` K ) ` ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ) ) = ( 0. ` K ) ) -> ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) = ( X ./\ ( Y .\/ Z ) ) ) ) |
104 |
9 96 103
|
mp2and |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X C Y /\ X C Z ) ) -> ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) = ( X ./\ ( Y .\/ Z ) ) ) |
105 |
104
|
eqcomd |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X C Y /\ X C Z ) ) -> ( X ./\ ( Y .\/ Z ) ) = ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ) |