Metamath Proof Explorer


Theorem omllat

Description: An orthomodular lattice is a lattice. (Contributed by NM, 6-Nov-2011)

Ref Expression
Assertion omllat
|- ( K e. OML -> K e. Lat )

Proof

Step Hyp Ref Expression
1 omlol
 |-  ( K e. OML -> K e. OL )
2 ollat
 |-  ( K e. OL -> K e. Lat )
3 1 2 syl
 |-  ( K e. OML -> K e. Lat )