| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							omllaw3.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							omllaw3.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							omllaw3.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							omllaw3.o | 
							 |-  ._|_ = ( oc ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							omllaw3.z | 
							 |-  .0. = ( 0. ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							oveq2 | 
							 |-  ( ( Y ./\ ( ._|_ ` X ) ) = .0. -> ( X ( join ` K ) ( Y ./\ ( ._|_ ` X ) ) ) = ( X ( join ` K ) .0. ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantl | 
							 |-  ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ ( Y ./\ ( ._|_ ` X ) ) = .0. ) -> ( X ( join ` K ) ( Y ./\ ( ._|_ ` X ) ) ) = ( X ( join ` K ) .0. ) )  | 
						
						
							| 8 | 
							
								
							 | 
							omlol | 
							 |-  ( K e. OML -> K e. OL )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							 |-  ( join ` K ) = ( join ` K )  | 
						
						
							| 10 | 
							
								1 9 5
							 | 
							olj01 | 
							 |-  ( ( K e. OL /\ X e. B ) -> ( X ( join ` K ) .0. ) = X )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							sylan | 
							 |-  ( ( K e. OML /\ X e. B ) -> ( X ( join ` K ) .0. ) = X )  | 
						
						
							| 12 | 
							
								11
							 | 
							3adant3 | 
							 |-  ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X ( join ` K ) .0. ) = X )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							 |-  ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ ( Y ./\ ( ._|_ ` X ) ) = .0. ) -> ( X ( join ` K ) .0. ) = X )  | 
						
						
							| 14 | 
							
								7 13
							 | 
							eqtr2d | 
							 |-  ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ ( Y ./\ ( ._|_ ` X ) ) = .0. ) -> X = ( X ( join ` K ) ( Y ./\ ( ._|_ ` X ) ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantrl | 
							 |-  ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ ( X .<_ Y /\ ( Y ./\ ( ._|_ ` X ) ) = .0. ) ) -> X = ( X ( join ` K ) ( Y ./\ ( ._|_ ` X ) ) ) )  | 
						
						
							| 16 | 
							
								1 2 9 3 4
							 | 
							omllaw | 
							 |-  ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X .<_ Y -> Y = ( X ( join ` K ) ( Y ./\ ( ._|_ ` X ) ) ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							imp | 
							 |-  ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ X .<_ Y ) -> Y = ( X ( join ` K ) ( Y ./\ ( ._|_ ` X ) ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantrr | 
							 |-  ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ ( X .<_ Y /\ ( Y ./\ ( ._|_ ` X ) ) = .0. ) ) -> Y = ( X ( join ` K ) ( Y ./\ ( ._|_ ` X ) ) ) )  | 
						
						
							| 19 | 
							
								15 18
							 | 
							eqtr4d | 
							 |-  ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ ( X .<_ Y /\ ( Y ./\ ( ._|_ ` X ) ) = .0. ) ) -> X = Y )  | 
						
						
							| 20 | 
							
								19
							 | 
							ex | 
							 |-  ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ ( Y ./\ ( ._|_ ` X ) ) = .0. ) -> X = Y ) )  |