Step |
Hyp |
Ref |
Expression |
1 |
|
omllaw5.b |
|- B = ( Base ` K ) |
2 |
|
omllaw5.j |
|- .\/ = ( join ` K ) |
3 |
|
omllaw5.m |
|- ./\ = ( meet ` K ) |
4 |
|
omllaw5.o |
|- ._|_ = ( oc ` K ) |
5 |
|
simp1 |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> K e. OML ) |
6 |
|
simp2 |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> X e. B ) |
7 |
|
omllat |
|- ( K e. OML -> K e. Lat ) |
8 |
1 2
|
latjcl |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) e. B ) |
9 |
7 8
|
syl3an1 |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) e. B ) |
10 |
5 6 9
|
3jca |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( K e. OML /\ X e. B /\ ( X .\/ Y ) e. B ) ) |
11 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
12 |
1 11 2
|
latlej1 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> X ( le ` K ) ( X .\/ Y ) ) |
13 |
7 12
|
syl3an1 |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> X ( le ` K ) ( X .\/ Y ) ) |
14 |
1 11 2 3 4
|
omllaw2N |
|- ( ( K e. OML /\ X e. B /\ ( X .\/ Y ) e. B ) -> ( X ( le ` K ) ( X .\/ Y ) -> ( X .\/ ( ( ._|_ ` X ) ./\ ( X .\/ Y ) ) ) = ( X .\/ Y ) ) ) |
15 |
10 13 14
|
sylc |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X .\/ ( ( ._|_ ` X ) ./\ ( X .\/ Y ) ) ) = ( X .\/ Y ) ) |