Description: An orthomodular lattice is an ortholattice. (Contributed by NM, 18-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omlol | |- ( K e. OML -> K e. OL ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | |- ( Base ` K ) = ( Base ` K ) | |
| 2 | eqid | |- ( le ` K ) = ( le ` K ) | |
| 3 | eqid | |- ( join ` K ) = ( join ` K ) | |
| 4 | eqid | |- ( meet ` K ) = ( meet ` K ) | |
| 5 | eqid | |- ( oc ` K ) = ( oc ` K ) | |
| 6 | 1 2 3 4 5 | isoml | |- ( K e. OML <-> ( K e. OL /\ A. x e. ( Base ` K ) A. y e. ( Base ` K ) ( x ( le ` K ) y -> y = ( x ( join ` K ) ( y ( meet ` K ) ( ( oc ` K ) ` x ) ) ) ) ) ) | 
| 7 | 6 | simplbi | |- ( K e. OML -> K e. OL ) |