Metamath Proof Explorer


Theorem omlol

Description: An orthomodular lattice is an ortholattice. (Contributed by NM, 18-Sep-2011)

Ref Expression
Assertion omlol
|- ( K e. OML -> K e. OL )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( Base ` K ) = ( Base ` K )
2 eqid
 |-  ( le ` K ) = ( le ` K )
3 eqid
 |-  ( join ` K ) = ( join ` K )
4 eqid
 |-  ( meet ` K ) = ( meet ` K )
5 eqid
 |-  ( oc ` K ) = ( oc ` K )
6 1 2 3 4 5 isoml
 |-  ( K e. OML <-> ( K e. OL /\ A. x e. ( Base ` K ) A. y e. ( Base ` K ) ( x ( le ` K ) y -> y = ( x ( join ` K ) ( y ( meet ` K ) ( ( oc ` K ) ` x ) ) ) ) ) )
7 6 simplbi
 |-  ( K e. OML -> K e. OL )