Description: An orthomodular lattice is an ortholattice. (Contributed by NM, 18-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | omlol | |- ( K e. OML -> K e. OL ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
2 | eqid | |- ( le ` K ) = ( le ` K ) |
|
3 | eqid | |- ( join ` K ) = ( join ` K ) |
|
4 | eqid | |- ( meet ` K ) = ( meet ` K ) |
|
5 | eqid | |- ( oc ` K ) = ( oc ` K ) |
|
6 | 1 2 3 4 5 | isoml | |- ( K e. OML <-> ( K e. OL /\ A. x e. ( Base ` K ) A. y e. ( Base ` K ) ( x ( le ` K ) y -> y = ( x ( join ` K ) ( y ( meet ` K ) ( ( oc ` K ) ` x ) ) ) ) ) ) |
7 | 6 | simplbi | |- ( K e. OML -> K e. OL ) |