| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omls.1 |
|- A e. CH |
| 2 |
|
omls.2 |
|- B e. SH |
| 3 |
|
eqeq1 |
|- ( A = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( A = B <-> if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) = B ) ) |
| 4 |
|
eqeq2 |
|- ( B = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) = B <-> if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) ) ) |
| 5 |
|
h0elch |
|- 0H e. CH |
| 6 |
1 5
|
ifcli |
|- if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) e. CH |
| 7 |
|
h0elsh |
|- 0H e. SH |
| 8 |
2 7
|
ifcli |
|- if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) e. SH |
| 9 |
|
sseq1 |
|- ( A = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( A C_ B <-> if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ B ) ) |
| 10 |
|
fveq2 |
|- ( A = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( _|_ ` A ) = ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) |
| 11 |
10
|
ineq2d |
|- ( A = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( B i^i ( _|_ ` A ) ) = ( B i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) ) |
| 12 |
11
|
eqeq1d |
|- ( A = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( ( B i^i ( _|_ ` A ) ) = 0H <-> ( B i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) |
| 13 |
9 12
|
anbi12d |
|- ( A = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) <-> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ B /\ ( B i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) ) |
| 14 |
|
sseq2 |
|- ( B = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ B <-> if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) ) ) |
| 15 |
|
ineq1 |
|- ( B = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( B i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) ) |
| 16 |
15
|
eqeq1d |
|- ( B = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( ( B i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H <-> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) |
| 17 |
14 16
|
anbi12d |
|- ( B = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ B /\ ( B i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) <-> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) /\ ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) ) |
| 18 |
|
sseq1 |
|- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( 0H C_ 0H <-> if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ 0H ) ) |
| 19 |
|
fveq2 |
|- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( _|_ ` 0H ) = ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) |
| 20 |
19
|
ineq2d |
|- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( 0H i^i ( _|_ ` 0H ) ) = ( 0H i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) ) |
| 21 |
20
|
eqeq1d |
|- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( ( 0H i^i ( _|_ ` 0H ) ) = 0H <-> ( 0H i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) |
| 22 |
18 21
|
anbi12d |
|- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( ( 0H C_ 0H /\ ( 0H i^i ( _|_ ` 0H ) ) = 0H ) <-> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ 0H /\ ( 0H i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) ) |
| 23 |
|
sseq2 |
|- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ 0H <-> if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) ) ) |
| 24 |
|
ineq1 |
|- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( 0H i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) ) |
| 25 |
24
|
eqeq1d |
|- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( ( 0H i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H <-> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) |
| 26 |
23 25
|
anbi12d |
|- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ 0H /\ ( 0H i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) <-> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) /\ ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) ) |
| 27 |
|
ssid |
|- 0H C_ 0H |
| 28 |
|
ocin |
|- ( 0H e. SH -> ( 0H i^i ( _|_ ` 0H ) ) = 0H ) |
| 29 |
7 28
|
ax-mp |
|- ( 0H i^i ( _|_ ` 0H ) ) = 0H |
| 30 |
27 29
|
pm3.2i |
|- ( 0H C_ 0H /\ ( 0H i^i ( _|_ ` 0H ) ) = 0H ) |
| 31 |
13 17 22 26 30
|
elimhyp2v |
|- ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) /\ ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) |
| 32 |
31
|
simpli |
|- if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) |
| 33 |
31
|
simpri |
|- ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H |
| 34 |
6 8 32 33
|
omlsii |
|- if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) |
| 35 |
3 4 34
|
dedth2v |
|- ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) -> A = B ) |