Step |
Hyp |
Ref |
Expression |
1 |
|
omls.1 |
|- A e. CH |
2 |
|
omls.2 |
|- B e. SH |
3 |
|
eqeq1 |
|- ( A = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( A = B <-> if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) = B ) ) |
4 |
|
eqeq2 |
|- ( B = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) = B <-> if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) ) ) |
5 |
|
h0elch |
|- 0H e. CH |
6 |
1 5
|
ifcli |
|- if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) e. CH |
7 |
|
h0elsh |
|- 0H e. SH |
8 |
2 7
|
ifcli |
|- if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) e. SH |
9 |
|
sseq1 |
|- ( A = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( A C_ B <-> if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ B ) ) |
10 |
|
fveq2 |
|- ( A = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( _|_ ` A ) = ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) |
11 |
10
|
ineq2d |
|- ( A = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( B i^i ( _|_ ` A ) ) = ( B i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) ) |
12 |
11
|
eqeq1d |
|- ( A = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( ( B i^i ( _|_ ` A ) ) = 0H <-> ( B i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) |
13 |
9 12
|
anbi12d |
|- ( A = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) <-> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ B /\ ( B i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) ) |
14 |
|
sseq2 |
|- ( B = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ B <-> if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) ) ) |
15 |
|
ineq1 |
|- ( B = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( B i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) ) |
16 |
15
|
eqeq1d |
|- ( B = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( ( B i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H <-> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) |
17 |
14 16
|
anbi12d |
|- ( B = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ B /\ ( B i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) <-> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) /\ ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) ) |
18 |
|
sseq1 |
|- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( 0H C_ 0H <-> if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ 0H ) ) |
19 |
|
fveq2 |
|- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( _|_ ` 0H ) = ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) |
20 |
19
|
ineq2d |
|- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( 0H i^i ( _|_ ` 0H ) ) = ( 0H i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) ) |
21 |
20
|
eqeq1d |
|- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( ( 0H i^i ( _|_ ` 0H ) ) = 0H <-> ( 0H i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) |
22 |
18 21
|
anbi12d |
|- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) -> ( ( 0H C_ 0H /\ ( 0H i^i ( _|_ ` 0H ) ) = 0H ) <-> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ 0H /\ ( 0H i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) ) |
23 |
|
sseq2 |
|- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ 0H <-> if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) ) ) |
24 |
|
ineq1 |
|- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( 0H i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) ) |
25 |
24
|
eqeq1d |
|- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( ( 0H i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H <-> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) |
26 |
23 25
|
anbi12d |
|- ( 0H = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) -> ( ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ 0H /\ ( 0H i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) <-> ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) /\ ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) ) ) |
27 |
|
ssid |
|- 0H C_ 0H |
28 |
|
ocin |
|- ( 0H e. SH -> ( 0H i^i ( _|_ ` 0H ) ) = 0H ) |
29 |
7 28
|
ax-mp |
|- ( 0H i^i ( _|_ ` 0H ) ) = 0H |
30 |
27 29
|
pm3.2i |
|- ( 0H C_ 0H /\ ( 0H i^i ( _|_ ` 0H ) ) = 0H ) |
31 |
13 17 22 26 30
|
elimhyp2v |
|- ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) /\ ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H ) |
32 |
31
|
simpli |
|- if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) C_ if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) |
33 |
31
|
simpri |
|- ( if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) i^i ( _|_ ` if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) ) ) = 0H |
34 |
6 8 32 33
|
omlsii |
|- if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , A , 0H ) = if ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) , B , 0H ) |
35 |
3 4 34
|
dedth2v |
|- ( ( A C_ B /\ ( B i^i ( _|_ ` A ) ) = 0H ) -> A = B ) |