Metamath Proof Explorer


Theorem omlsilem

Description: Lemma for orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses omlsilem.1
|- G e. SH
omlsilem.2
|- H e. SH
omlsilem.3
|- G C_ H
omlsilem.4
|- ( H i^i ( _|_ ` G ) ) = 0H
omlsilem.5
|- A e. H
omlsilem.6
|- B e. G
omlsilem.7
|- C e. ( _|_ ` G )
Assertion omlsilem
|- ( A = ( B +h C ) -> A e. G )

Proof

Step Hyp Ref Expression
1 omlsilem.1
 |-  G e. SH
2 omlsilem.2
 |-  H e. SH
3 omlsilem.3
 |-  G C_ H
4 omlsilem.4
 |-  ( H i^i ( _|_ ` G ) ) = 0H
5 omlsilem.5
 |-  A e. H
6 omlsilem.6
 |-  B e. G
7 omlsilem.7
 |-  C e. ( _|_ ` G )
8 2 5 shelii
 |-  A e. ~H
9 1 6 shelii
 |-  B e. ~H
10 shocss
 |-  ( G e. SH -> ( _|_ ` G ) C_ ~H )
11 1 10 ax-mp
 |-  ( _|_ ` G ) C_ ~H
12 11 7 sselii
 |-  C e. ~H
13 8 9 12 hvsubaddi
 |-  ( ( A -h B ) = C <-> ( B +h C ) = A )
14 eqcom
 |-  ( ( B +h C ) = A <-> A = ( B +h C ) )
15 13 14 bitri
 |-  ( ( A -h B ) = C <-> A = ( B +h C ) )
16 3 6 sselii
 |-  B e. H
17 shsubcl
 |-  ( ( H e. SH /\ A e. H /\ B e. H ) -> ( A -h B ) e. H )
18 2 5 16 17 mp3an
 |-  ( A -h B ) e. H
19 eleq1
 |-  ( ( A -h B ) = C -> ( ( A -h B ) e. H <-> C e. H ) )
20 18 19 mpbii
 |-  ( ( A -h B ) = C -> C e. H )
21 15 20 sylbir
 |-  ( A = ( B +h C ) -> C e. H )
22 4 eleq2i
 |-  ( C e. ( H i^i ( _|_ ` G ) ) <-> C e. 0H )
23 elin
 |-  ( C e. ( H i^i ( _|_ ` G ) ) <-> ( C e. H /\ C e. ( _|_ ` G ) ) )
24 elch0
 |-  ( C e. 0H <-> C = 0h )
25 22 23 24 3bitr3i
 |-  ( ( C e. H /\ C e. ( _|_ ` G ) ) <-> C = 0h )
26 21 7 25 sylanblc
 |-  ( A = ( B +h C ) -> C = 0h )
27 26 oveq2d
 |-  ( A = ( B +h C ) -> ( B +h C ) = ( B +h 0h ) )
28 ax-hvaddid
 |-  ( B e. ~H -> ( B +h 0h ) = B )
29 9 28 ax-mp
 |-  ( B +h 0h ) = B
30 27 29 eqtrdi
 |-  ( A = ( B +h C ) -> ( B +h C ) = B )
31 30 6 eqeltrdi
 |-  ( A = ( B +h C ) -> ( B +h C ) e. G )
32 eleq1
 |-  ( A = ( B +h C ) -> ( A e. G <-> ( B +h C ) e. G ) )
33 31 32 mpbird
 |-  ( A = ( B +h C ) -> A e. G )