Step |
Hyp |
Ref |
Expression |
1 |
|
omlsilem.1 |
|- G e. SH |
2 |
|
omlsilem.2 |
|- H e. SH |
3 |
|
omlsilem.3 |
|- G C_ H |
4 |
|
omlsilem.4 |
|- ( H i^i ( _|_ ` G ) ) = 0H |
5 |
|
omlsilem.5 |
|- A e. H |
6 |
|
omlsilem.6 |
|- B e. G |
7 |
|
omlsilem.7 |
|- C e. ( _|_ ` G ) |
8 |
2 5
|
shelii |
|- A e. ~H |
9 |
1 6
|
shelii |
|- B e. ~H |
10 |
|
shocss |
|- ( G e. SH -> ( _|_ ` G ) C_ ~H ) |
11 |
1 10
|
ax-mp |
|- ( _|_ ` G ) C_ ~H |
12 |
11 7
|
sselii |
|- C e. ~H |
13 |
8 9 12
|
hvsubaddi |
|- ( ( A -h B ) = C <-> ( B +h C ) = A ) |
14 |
|
eqcom |
|- ( ( B +h C ) = A <-> A = ( B +h C ) ) |
15 |
13 14
|
bitri |
|- ( ( A -h B ) = C <-> A = ( B +h C ) ) |
16 |
3 6
|
sselii |
|- B e. H |
17 |
|
shsubcl |
|- ( ( H e. SH /\ A e. H /\ B e. H ) -> ( A -h B ) e. H ) |
18 |
2 5 16 17
|
mp3an |
|- ( A -h B ) e. H |
19 |
|
eleq1 |
|- ( ( A -h B ) = C -> ( ( A -h B ) e. H <-> C e. H ) ) |
20 |
18 19
|
mpbii |
|- ( ( A -h B ) = C -> C e. H ) |
21 |
15 20
|
sylbir |
|- ( A = ( B +h C ) -> C e. H ) |
22 |
4
|
eleq2i |
|- ( C e. ( H i^i ( _|_ ` G ) ) <-> C e. 0H ) |
23 |
|
elin |
|- ( C e. ( H i^i ( _|_ ` G ) ) <-> ( C e. H /\ C e. ( _|_ ` G ) ) ) |
24 |
|
elch0 |
|- ( C e. 0H <-> C = 0h ) |
25 |
22 23 24
|
3bitr3i |
|- ( ( C e. H /\ C e. ( _|_ ` G ) ) <-> C = 0h ) |
26 |
21 7 25
|
sylanblc |
|- ( A = ( B +h C ) -> C = 0h ) |
27 |
26
|
oveq2d |
|- ( A = ( B +h C ) -> ( B +h C ) = ( B +h 0h ) ) |
28 |
|
ax-hvaddid |
|- ( B e. ~H -> ( B +h 0h ) = B ) |
29 |
9 28
|
ax-mp |
|- ( B +h 0h ) = B |
30 |
27 29
|
eqtrdi |
|- ( A = ( B +h C ) -> ( B +h C ) = B ) |
31 |
30 6
|
eqeltrdi |
|- ( A = ( B +h C ) -> ( B +h C ) e. G ) |
32 |
|
eleq1 |
|- ( A = ( B +h C ) -> ( A e. G <-> ( B +h C ) e. G ) ) |
33 |
31 32
|
mpbird |
|- ( A = ( B +h C ) -> A e. G ) |