Step |
Hyp |
Ref |
Expression |
1 |
|
odd2np1 |
|- ( A e. ZZ -> ( -. 2 || A <-> E. a e. ZZ ( ( 2 x. a ) + 1 ) = A ) ) |
2 |
|
odd2np1 |
|- ( B e. ZZ -> ( -. 2 || B <-> E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) ) |
3 |
1 2
|
bi2anan9 |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( -. 2 || A /\ -. 2 || B ) <-> ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) ) ) |
4 |
|
reeanv |
|- ( E. a e. ZZ E. b e. ZZ ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) <-> ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) ) |
5 |
|
2z |
|- 2 e. ZZ |
6 |
|
zsubcl |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( a - b ) e. ZZ ) |
7 |
|
dvdsmul1 |
|- ( ( 2 e. ZZ /\ ( a - b ) e. ZZ ) -> 2 || ( 2 x. ( a - b ) ) ) |
8 |
5 6 7
|
sylancr |
|- ( ( a e. ZZ /\ b e. ZZ ) -> 2 || ( 2 x. ( a - b ) ) ) |
9 |
|
zcn |
|- ( a e. ZZ -> a e. CC ) |
10 |
|
zcn |
|- ( b e. ZZ -> b e. CC ) |
11 |
|
2cn |
|- 2 e. CC |
12 |
|
mulcl |
|- ( ( 2 e. CC /\ a e. CC ) -> ( 2 x. a ) e. CC ) |
13 |
11 12
|
mpan |
|- ( a e. CC -> ( 2 x. a ) e. CC ) |
14 |
|
mulcl |
|- ( ( 2 e. CC /\ b e. CC ) -> ( 2 x. b ) e. CC ) |
15 |
11 14
|
mpan |
|- ( b e. CC -> ( 2 x. b ) e. CC ) |
16 |
|
ax-1cn |
|- 1 e. CC |
17 |
|
pnpcan2 |
|- ( ( ( 2 x. a ) e. CC /\ ( 2 x. b ) e. CC /\ 1 e. CC ) -> ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) = ( ( 2 x. a ) - ( 2 x. b ) ) ) |
18 |
16 17
|
mp3an3 |
|- ( ( ( 2 x. a ) e. CC /\ ( 2 x. b ) e. CC ) -> ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) = ( ( 2 x. a ) - ( 2 x. b ) ) ) |
19 |
13 15 18
|
syl2an |
|- ( ( a e. CC /\ b e. CC ) -> ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) = ( ( 2 x. a ) - ( 2 x. b ) ) ) |
20 |
|
subdi |
|- ( ( 2 e. CC /\ a e. CC /\ b e. CC ) -> ( 2 x. ( a - b ) ) = ( ( 2 x. a ) - ( 2 x. b ) ) ) |
21 |
11 20
|
mp3an1 |
|- ( ( a e. CC /\ b e. CC ) -> ( 2 x. ( a - b ) ) = ( ( 2 x. a ) - ( 2 x. b ) ) ) |
22 |
19 21
|
eqtr4d |
|- ( ( a e. CC /\ b e. CC ) -> ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) = ( 2 x. ( a - b ) ) ) |
23 |
9 10 22
|
syl2an |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) = ( 2 x. ( a - b ) ) ) |
24 |
8 23
|
breqtrrd |
|- ( ( a e. ZZ /\ b e. ZZ ) -> 2 || ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) ) |
25 |
|
oveq12 |
|- ( ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) = ( A - B ) ) |
26 |
25
|
breq2d |
|- ( ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> ( 2 || ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) <-> 2 || ( A - B ) ) ) |
27 |
24 26
|
syl5ibcom |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> 2 || ( A - B ) ) ) |
28 |
27
|
rexlimivv |
|- ( E. a e. ZZ E. b e. ZZ ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> 2 || ( A - B ) ) |
29 |
4 28
|
sylbir |
|- ( ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) -> 2 || ( A - B ) ) |
30 |
3 29
|
syl6bi |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( -. 2 || A /\ -. 2 || B ) -> 2 || ( A - B ) ) ) |
31 |
30
|
imp |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( -. 2 || A /\ -. 2 || B ) ) -> 2 || ( A - B ) ) |
32 |
31
|
an4s |
|- ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( B e. ZZ /\ -. 2 || B ) ) -> 2 || ( A - B ) ) |