Description: The class of natural numbers _om is either an ordinal number (if we accept the Axiom of Infinity) or the proper class of all ordinal numbers (if we deny the Axiom of Infinity). Remark in TakeutiZaring p. 43. (Contributed by NM, 10-May-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | omon | |- ( _om e. On \/ _om = On ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom | |- Ord _om |
|
2 | ordeleqon | |- ( Ord _om <-> ( _om e. On \/ _om = On ) ) |
|
3 | 1 2 | mpbi | |- ( _om e. On \/ _om = On ) |